A Riemann solver for RANS
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 126-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An exact expression for a system of both eigenvalues and right/left eigenvectors of a Jacobian matrix for a convective two-equation differential closure RANS operator split along a curvilinear coordinate is derived. It is shown by examples of numerical modeling of supersonic flows over a flat plate and a compression corner with separation that application of the exact system of eigenvalues and eigenvectors to the Roe approach for approximate solution of the Riemann problem gives rise to an increase in the convergence rate, better stability and higher accuracy of a steady-state solution in comparison with those in the case of an approximate system.
@article{ZVMMF_2014_54_1_a10,
     author = {P. V. Chuvakhov},
     title = {A {Riemann} solver for {RANS}},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {126--138},
     year = {2014},
     volume = {54},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a10/}
}
TY  - JOUR
AU  - P. V. Chuvakhov
TI  - A Riemann solver for RANS
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 126
EP  - 138
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a10/
LA  - ru
ID  - ZVMMF_2014_54_1_a10
ER  - 
%0 Journal Article
%A P. V. Chuvakhov
%T A Riemann solver for RANS
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 126-138
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a10/
%G ru
%F ZVMMF_2014_54_1_a10
P. V. Chuvakhov. A Riemann solver for RANS. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 126-138. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a10/

[1] Roe P. L., “Approximate Reimann solvers, parameter vectors, and difference schemes”, J. Comp. Phys., 43 (1981), 357–372 | DOI | MR | Zbl

[2] Toro E., Riemann solvers and numerical methods for fluid dynamic. A practical introduction, Springer, Berlin, 2009 | MR

[3] Masatsuka K., I do like CFD, 2009

[4] Tirskii G. A. i dr., Giperzvukovaya aerodinamika i teploobmen spuskaemykh kosmicheskikh apparatov i planetnykh zondov, Fizmatlit, M., 2011

[5] Liu Y., Vinokur M., Equilibrium gas flow computations. II: An alalisis of numerical formulations of conservation laws, AIAA Paper No 87-0127, 1988

[6] Liu Y., Vinokur M., Nonequilibrium flow computations. I: An analisis of numerical formulations of conservation laws, NASA contractor rept 177489, contract NAS2-11555, 1988 | MR

[7] Moran K., A comparison of molecular vibration modeling for thermal nonequilibrium airflow, master's thesis, Air Force Institute of Technology, 1990

[8] Eulderink F., Mellema G., “General relativistic hydrodynamics with a Roe solver”, Astron. Astrophys., 110 (1995)

[9] Taubenschuss U., Erkaev V., Viernat H., “First results on MHD simulation of magnetic clouds using a Roe-type approximate Riemann solver”, Physics of Aurorial Phenomina, Proc. XXX Annual Seminar, 2007, 141–144

[10] Morrison J., Flux difference split scheme for turbulent transport equations, AIAA Paper No 90-5251, 1990

[11] Jae-doo Lee, Development of an efficient viscous approach in a Cartesian grid framework and application to rotor-fuselage interaction, Ph. D. thesis, Georgia Institute of Technology, 2006

[12] Morrison J., A compressible Navier–Stokes solver with two-equation and Reynolds stress turbulence closure models, NASA contracter rept 4440, contract NAS1-19320, 1992

[13] Marvin J. G., Coakley T. J., “Turbulence modelling for hypersonic flows”, The third joint joint Europe, US short course in hypersonics, RWTH Aachen, Aache, FRG, 1990

[14] Bashkin V. A., Egorov I. V., Chislennoe modelirovanie dinamiki vyazkogo sovershennogo gaza, Fizmatlit, M., 2012

[15] Godunov S. K., “Konechno-raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gazovoi dinamiki”, Matem. sb., 47 (1959), 271–291 | MR

[16] Godunov S. K., Zabrodin A. V., Ivanov M. Ya. i dr., Konechno-raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gazovoi dinamiki, Nauka, M., 1976 | Zbl

[17] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechnoraznostnykh skhem dlya rascheta razryvnykh techenii gazovoi dinamiki”, Uch. zap. TsAGI, 3:6 (1972), 68–77

[18] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357–372 | DOI | MR

[19] Ivanov M. Ya., Krupa V. G., Nigmatullin R. Z., “Neyavnaya skhema S. K. Godunova povyshennoi tochnosti dlya integrirovaniya uravnenii Nave–Stoksa”, Zh. vychisl. matem. i matem. fiz., 29:6 (1989), 888–901 | MR | Zbl

[20] Karimov T. Kh., “O nekotorykh iteratsionnykh metodakh resheniya nelineinykh uravnenii v gilbertovom prostranstve”, Dokl. AN SSSR, 269:5 (1983), 1038–1046 | MR

[21] Saad Y., Shultz M. H., “GMRes: a generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Scient. and Statist. Comp., 7:3 (1986), 856–869 | DOI | MR | Zbl

[22] Babaev I. Yu., Bashkin V. A., Egorov I. V., “Chislennoe reshenie uravnenii Nave–Stoksa s ispolzovaniem iteratsionnykh metodov variatsionnogo tipa”, Zh. vychisl. matem. i matem. fiz., 34:11 (1994), 1693–1703 | MR | Zbl

[23] Bardina J. E., Huang P. G., Coacley T. J., Turbulence modeling validation, testing, and development, NASA Technical Memorandum 110446, Ames Research Center, Moffett Field, California, 1997