Mixed problem for a first-order partial differential equation with involution and periodic boundary conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Fourier method is used to find a classical solution of the mixed problem for a first-order differential equation with involution and periodic boundary conditions. The application of the Fourier method is substantiated using refined asymptotic formulas obtained for the eigenvalues and eigenfunctions of the corresponding spectral problem. The Fourier series representing the formal solution is transformed using certain techniques, and the possibility of its term-by-term differentiation is proved. Minimal requirements are imposed on the initial data of the problem.
@article{ZVMMF_2014_54_1_a0,
     author = {M. Sh. Burlutskaya},
     title = {Mixed problem for a first-order partial differential equation with involution and periodic boundary conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {3--12},
     year = {2014},
     volume = {54},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a0/}
}
TY  - JOUR
AU  - M. Sh. Burlutskaya
TI  - Mixed problem for a first-order partial differential equation with involution and periodic boundary conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 3
EP  - 12
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a0/
LA  - ru
ID  - ZVMMF_2014_54_1_a0
ER  - 
%0 Journal Article
%A M. Sh. Burlutskaya
%T Mixed problem for a first-order partial differential equation with involution and periodic boundary conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 3-12
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a0/
%G ru
%F ZVMMF_2014_54_1_a0
M. Sh. Burlutskaya. Mixed problem for a first-order partial differential equation with involution and periodic boundary conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a0/

[1] Krylov A. N., O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, L., 1950

[2] Chernyatin V. A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, Izd-vo MGU, M., 1991 | MR

[3] Burlutskaya M. Sh., Khromov A. P., “Metod Fure v smeshannoi zadache dlya uravneniya s chastnymi proizvodnymi pervogo poryadka s involyutsiei”, Zh. vychisl. matem. i matem. fiz., 51:12 (2011), 2233–2246 | MR | Zbl

[4] Khromov A. P., “Smeshannaya zadacha dlya differentsialnogo uravneniya s involyutsiei i potentsialom spetsialnogo vida”, Izv. Saratovskogo un-ta. Seriya Matem. Mekhan. Inform., 10:4 (2010), 17–22

[5] Burlutskaya M. Sh., Khromov A. P., “Klassicheskoe reshenie dlya smeshannoi zadachi s involyutsiei”, Dokl. AN, 435:2 (2010), 151–154 | MR | Zbl

[6] Burlutskaya M. Sh., Khromov A. P., “Obosnovanie metoda Fure v smeshannykh zadachakh s involyutsiei”, Izv. Sarat. un-ta. Nov. ser. Ser. Matem. Mekhan. Inform., 11:4 (2011), 3–12

[7] Khromov A. P., “Ob asimptotike reshenii uravneniya Diraka”, Sovremennye metody teorii funktsii i smezhnye problemy, Materialy Voronezh. zimn. matem. shkoly (Voronezh, 2011), 346–347

[8] Burlutskaya M. Sh., “Asimptoticheskie formuly dlya sobstvennykh znachenii i sobstvennykh funktsii funktsionalno-differentsialnogo operatora s involyutsiei”, Vestnik Voronezh. gos. un-ta. Ser. Fizika, matem., 2011, no. 2, 64–72

[9] Burlutskaya M. Sh., Khromov A. P., “O klassicheskom reshenii smeshannoi zadachi dlya uravneniya pervogo poryadka s involyutsiei”, Vestnik Voronezh. gos. un-ta. Ser. Fizika, matem., 2010, no. 2, 26–33