@article{ZVMMF_2014_54_1_a0,
author = {M. Sh. Burlutskaya},
title = {Mixed problem for a first-order partial differential equation with involution and periodic boundary conditions},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {3--12},
year = {2014},
volume = {54},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a0/}
}
TY - JOUR AU - M. Sh. Burlutskaya TI - Mixed problem for a first-order partial differential equation with involution and periodic boundary conditions JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 3 EP - 12 VL - 54 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a0/ LA - ru ID - ZVMMF_2014_54_1_a0 ER -
%0 Journal Article %A M. Sh. Burlutskaya %T Mixed problem for a first-order partial differential equation with involution and periodic boundary conditions %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 3-12 %V 54 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a0/ %G ru %F ZVMMF_2014_54_1_a0
M. Sh. Burlutskaya. Mixed problem for a first-order partial differential equation with involution and periodic boundary conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a0/
[1] Krylov A. N., O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, L., 1950
[2] Chernyatin V. A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, Izd-vo MGU, M., 1991 | MR
[3] Burlutskaya M. Sh., Khromov A. P., “Metod Fure v smeshannoi zadache dlya uravneniya s chastnymi proizvodnymi pervogo poryadka s involyutsiei”, Zh. vychisl. matem. i matem. fiz., 51:12 (2011), 2233–2246 | MR | Zbl
[4] Khromov A. P., “Smeshannaya zadacha dlya differentsialnogo uravneniya s involyutsiei i potentsialom spetsialnogo vida”, Izv. Saratovskogo un-ta. Seriya Matem. Mekhan. Inform., 10:4 (2010), 17–22
[5] Burlutskaya M. Sh., Khromov A. P., “Klassicheskoe reshenie dlya smeshannoi zadachi s involyutsiei”, Dokl. AN, 435:2 (2010), 151–154 | MR | Zbl
[6] Burlutskaya M. Sh., Khromov A. P., “Obosnovanie metoda Fure v smeshannykh zadachakh s involyutsiei”, Izv. Sarat. un-ta. Nov. ser. Ser. Matem. Mekhan. Inform., 11:4 (2011), 3–12
[7] Khromov A. P., “Ob asimptotike reshenii uravneniya Diraka”, Sovremennye metody teorii funktsii i smezhnye problemy, Materialy Voronezh. zimn. matem. shkoly (Voronezh, 2011), 346–347
[8] Burlutskaya M. Sh., “Asimptoticheskie formuly dlya sobstvennykh znachenii i sobstvennykh funktsii funktsionalno-differentsialnogo operatora s involyutsiei”, Vestnik Voronezh. gos. un-ta. Ser. Fizika, matem., 2011, no. 2, 64–72
[9] Burlutskaya M. Sh., Khromov A. P., “O klassicheskom reshenii smeshannoi zadachi dlya uravneniya pervogo poryadka s involyutsiei”, Vestnik Voronezh. gos. un-ta. Ser. Fizika, matem., 2010, no. 2, 26–33