Application of integrodifferential splines to solving an interpolation problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 12, pp. 1966-1978 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper deals with cases when the values of derivatives of a function are given at grid nodes or the values of integrals of a function over grid intervals are known. Polynomial and trigonometric integrodifferential splines for computing the value of a function from given values of its nodal derivatives and/or from its integrals over grid intervals are constructed. Error estimates are obtained, and numerical results are presented.
@article{ZVMMF_2014_54_12_a9,
     author = {I. G. Burova and O. V. Rodnikova},
     title = {Application of integrodifferential splines to solving an interpolation problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1966--1978},
     year = {2014},
     volume = {54},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_12_a9/}
}
TY  - JOUR
AU  - I. G. Burova
AU  - O. V. Rodnikova
TI  - Application of integrodifferential splines to solving an interpolation problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1966
EP  - 1978
VL  - 54
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_12_a9/
LA  - ru
ID  - ZVMMF_2014_54_12_a9
ER  - 
%0 Journal Article
%A I. G. Burova
%A O. V. Rodnikova
%T Application of integrodifferential splines to solving an interpolation problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1966-1978
%V 54
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_12_a9/
%G ru
%F ZVMMF_2014_54_12_a9
I. G. Burova; O. V. Rodnikova. Application of integrodifferential splines to solving an interpolation problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 12, pp. 1966-1978. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_12_a9/

[1] Kireev V. I., Biryukova T. K., “Polinomialnye integro-differentsialnye odnomernye i dvumernye splainy”, Vychisl. tekhnologii, 3:3 (1998), 19–34

[2] Kireev V. I., Panteleev A. V., Chislennye metody v primerakh i zadachakh, Vysshaya shkola, M., 2004

[3] Burova I. G., Approksimatsiya veschestvennymi i kompleksnymi minimalnymi splainami, Izd-vo SPbGU, SPb., 2013

[4] Mikhlin S. G., “Variatsionno-setochnaya approksimatsiya”, Zap. nauchn. semin. LOMI, 48, 1974, 32–188

[5] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980

[6] Faddeev D. K., Sominskii I. S., Sbornik zadach po vysshei algebre, Nauka, M., 1972

[7] Forsait Dzh., Malkolm M., Mouler K., Mashinnye metody matematicheskikh vychislenii, Izd-vo Mir, M., 1980

[8] Ryabenkii V. S., Vvedenie v vychislitelnuyu matematiku, Fizmatlit, M., 1994

[9] Dimaki A. V., Svetlakov A. A., “Approksimatsiya plotnostei raspredelenii sluchainykh velichin s primeneniem ortogonalnykh mnogochlenov Chebysheva–Ermita”, Izv. Tomskogo politekhn. un-ta, 309:8 (2006), 6–11

[10] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 1, Fizmatlit, M., 1962

[11] Sergeev A. G., Krokhin V. V., Metrologiya, Izd-vo Logos, M., 2001