Numerical implementation of an iterative method with boundary condition splitting for solving the nonstationary stokes problem on the basis of an asymptotically stable two-stage difference scheme
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 12, pp. 1894-1903 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new numerical implementation of a fast-converging iterative method with splitting of boundary conditions is constructed for solving the Dirichlet initial-boundary value problem for the nonstationary Stokes system. The method was earlier proposed and substantiated at the differential level by B. V. Pal’tsev. The problem is considered in a strip and is assumed to be periodic along the strip. According to the numerical implementation proposed, a special vector parabolic problem for velocity approximations (which arises at iterations of the method) is discretized using an asymptotically stable two-stage difference scheme that is second-order accurate in time. The spatial discretization is based on bilinear finite elements on uniform rectangular grids. A numerical study shows that the convergence rate of the constructed iterative method is as high as that of the original method at the differential level (the error is reduced by approximately 7 times per iteration step). For velocities, the method is second-order accurate in the max norm. For pressures, the method is second-order accurate in space and first-order accurate in time.
@article{ZVMMF_2014_54_12_a5,
     author = {M. B. Solov'ev},
     title = {Numerical implementation of an iterative method with boundary condition splitting for solving the nonstationary stokes problem on the basis of an asymptotically stable two-stage difference scheme},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1894--1903},
     year = {2014},
     volume = {54},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_12_a5/}
}
TY  - JOUR
AU  - M. B. Solov'ev
TI  - Numerical implementation of an iterative method with boundary condition splitting for solving the nonstationary stokes problem on the basis of an asymptotically stable two-stage difference scheme
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1894
EP  - 1903
VL  - 54
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_12_a5/
LA  - ru
ID  - ZVMMF_2014_54_12_a5
ER  - 
%0 Journal Article
%A M. B. Solov'ev
%T Numerical implementation of an iterative method with boundary condition splitting for solving the nonstationary stokes problem on the basis of an asymptotically stable two-stage difference scheme
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1894-1903
%V 54
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_12_a5/
%G ru
%F ZVMMF_2014_54_12_a5
M. B. Solov'ev. Numerical implementation of an iterative method with boundary condition splitting for solving the nonstationary stokes problem on the basis of an asymptotically stable two-stage difference scheme. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 12, pp. 1894-1903. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_12_a5/

[1] Paltsev B. V., “Ob odnom iteratsionnom metode s rasschepleniem granichnykh uslovii resheniya 1-oi nachalno-kraevoi zadachi dlya nestatsionarnoi sistemy Stoksa”, Tez. dokl. Mezhdunar. konf., posvyasch. 100-letiyu so dnya rozhdeniya S. L. Soboleva (Novosibirsk, 2008), 540

[2] Paltsev B. V., “Ob odnom iteratsionnom metode s rasschepleniem granichnykh uslovii resheniya 1-oi nachalno-kraevoi zadachi dlya sistemy Stoksa”, Dokl. RAN, 432:5 (2010), 597–603

[3] Solovev M. B., “O chislennykh realizatsiyakh novogo iteratsionnogo metoda s rasschepleniem granichnykh uslovii resheniya nestatsionarnoi zadachi Stoksa v polose pri uslovii periodichnosti”, Zh. vychisl. matem. i matem. fiz., 50:10 (2010), 1771–1792

[4] Solovev M. B., “Chislennye realizatsii iteratsionnogo metoda s rasschepleniem granichnykh uslovii resheniya nestatsionarnoi zadachi Stoksa v zazore mezhdu koaksialnymi tsilindrami”, Zh. vychisl. matem. i matem. fiz., 50:11 (2010), 1998–2016

[5] Kobelkov G. M., “O chislennykh metodakh resheniya uravnenii Nave–Stoksa v peremennykh skorost-davlenie”, Vychisl. protsessy i sistemy, 8, Nauka, M., 1991, 204–236

[6] Girault V., Raviart P., Finite element methods for Navier–Stokes equations, Springer, Berlin, 1986

[7] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983

[8] Paltsev B. V., “K teorii dvukhetapnoi asimptoticheski ustoichivoi skhemy vtorogo poryadka tochnosti dlya neodnorodnoi parabolicheskoi nachalno-kraevoi zadachi”, Zh. vychisl. matem. i matem. fiz., 53:4 (2013), 538–574 | DOI

[9] Lozinskii A. S., “Ob uskorenii konechno-elementnykh realizatsii iteratsionnykh protsessov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 40:9 (2000), 1339–1363

[10] Paltsev B. V., “Ob usloviyakh skhodimosti metoda s rasschepleniem granichnykh uslovii v prostranstvakh Soboleva vysokoi gladkosti i usloviyakh soglasovaniya dlya nestatsionarnoi zadachi Stoksa”, Dokl. RAN, 435:4 (2010), 455–459

[11] Paltsev B. V., “O bystroskhodyaschikhsya iteratsionnykh metodakh s nepolnym rasschepleniem granichnykh uslovii dlya mnogomernoi singulyarno vozmuschennoi sistemy tipa Stoksa”, Matem. sb., 185:4 (1994), 101–150

[12] Paltsev B. V., Chechel I. I., “Algoritmy chislennykh realizatsii na osnove bilineinykh konechnykh elementov iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa v polose pri uslovii periodichnosti”, Zh. vychisl. matem. i matem. fiz., 37:7 (1997), 799–815

[13] Paltsev B. V., Chechel I. I., “O nekotorykh sposobakh povysheniya skorosti skhodimosti na vysokikh garmonikakh bilineinykh konechno?elementnykh realizatsii iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 38:6 (1998), 956–970

[14] Fedorenko R. P., “Iteratsionnye metody resheniya raznostnykh ellipticheskikh uravnenii”, Uspekhi matem. nauk, 28:2 (1973), 121–182

[15] McCormick S. F., Ruge J. W., “Multigrid methods for variational problems”, SIAM J. Numer. Analys., 19:5 (1982), 924–929 | DOI

[16] Paltsev B. V., Chechel I. I., “O realnykh kachestvakh bilineinykh konechno-elementnykh realizatsii metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 38:2 (1998), 247–261