Stability estimates in the problem of cloaking material bodies for Maxwell’s equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 12, pp. 1863-1878 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A control problem is considered for the three-dimensional Maxwell equations in the exterior of an impenetrable body with a boundary partly covered for cloaking. The role of the control is played by the surface impedance of the covered part of the boundary, which enters into the impedance boundary condition. The solvability of the control problem is proved, and an optimality system describing necessary conditions for an extremum is derived. An analysis of the optimality system yields sufficient conditions on the initial data that ensure the uniqueness and stability of optimal solutions for a particular cost functional.
@article{ZVMMF_2014_54_12_a3,
     author = {G. V. Alekseev},
     title = {Stability estimates in the problem of cloaking material bodies for {Maxwell{\textquoteright}s} equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1863--1878},
     year = {2014},
     volume = {54},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_12_a3/}
}
TY  - JOUR
AU  - G. V. Alekseev
TI  - Stability estimates in the problem of cloaking material bodies for Maxwell’s equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1863
EP  - 1878
VL  - 54
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_12_a3/
LA  - ru
ID  - ZVMMF_2014_54_12_a3
ER  - 
%0 Journal Article
%A G. V. Alekseev
%T Stability estimates in the problem of cloaking material bodies for Maxwell’s equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1863-1878
%V 54
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_12_a3/
%G ru
%F ZVMMF_2014_54_12_a3
G. V. Alekseev. Stability estimates in the problem of cloaking material bodies for Maxwell’s equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 12, pp. 1863-1878. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_12_a3/

[1] Pendry J. B., Shurig D., Smith D. R., “Controlling electromagnetic fields”, Science, 312 (2006), 1780–1782 | DOI

[2] Leonhardt U., “Optical conformal mapping”, Science, 312 (2006), 1777–1780 | DOI

[3] Chen H., Wi B.-I., Zhang B., Kong J. A., “Electromagnetic wave interactions with a metamaterial cloak”, Phys. Rev. Lett., 99 (2007), 063903 | DOI

[4] Norris A. N., “Acoustic cloaking theory”, Proc. R. Soc. Lond. A, 464 (2008), 2411–2434 | DOI

[5] Greenleaf A., Kurylev Y., Lassas M., Uhlamann G., “Full-wave invisibility of active devices at all frequencies”, Comm. Math. Phys., 279 (2007), 749–789 | DOI

[6] Greenleaf A., Kurylev Y., Lassas M., Uhlmann G., “Invisibility and inverse problems”, Bull. Amer. Math. Soc., 46 (2009), 55–97 | DOI

[7] Yan M., Yan W., Qiu M., “Invisibility cloaking by coordinate transformation”, Chapter 4, Progress in optics, 52, Elsevier, 2008, 261–304 | DOI

[8] Alekseev G. V., Romanov V. G., “Ob odnom klasse nerasseivayuschikh akusticheskikh obolochek dlya modeli anizotropnoi akustiki”, Sibirskii zhurnal industr. matem., 14:2 (2011), 1–6

[9] Nguyen H., Vogelius M. S., “Full range scattering estimates and their application to cloaking”, Arch. Ration. Mech. Analys., 203 (2012), 769–807 | DOI

[10] Dubinov A. E., Mytareva L. A., “Maskirovka materialnykh tel metodom volnovogo obtekaniya”, Uspekhi fiz. nauk, 180:5 (2010), 475–501 | DOI

[11] Greenleaf A., Kurylev Y., Lassas M., Uhlmann G., “Isotropic transformation optics: approximate acoustic and quantum cloaking”, New J. Phys., 10 (2008), 115024 | DOI

[12] Kohn R., Onofrei D., Vogelius M., Weinstein M., “Cloaking via change of variables for the Helmholtz equation”, Comm. Pure Appl. Math., 63 (2010), 973–1016

[13] Liu H., Zhou T., “Transformation optics and approximate cloaking”, Contemporary Math., 559, 2011, 65–83 | DOI

[14] Liu H., Zhou T., “Two dimensional invisibility cloaking by transformation optics”, Discrete and Contin. Dynamical Systems. Ser. A, 31 (2011), 525–543 | DOI

[15] Liu H., “On near-cloak in acoustic scattering”, J. Diff. Eq., 254 (2013), 1230–1246 | DOI

[16] Bobrovnitskii Yu. I., “Nauchnye osnovy akusticheskogo stelsa”, Dokl. AN, 442:1 (2012), 41–44

[17] Alekseev G. V., “Optimizatsiya v zadachakh maskirovki materialnykh tel metodom volnovogo obtekaniya”, Dokl. AN, 449:6 (2013), 652–656 | DOI

[18] Alekseev G. V., “Upravlenie granichnym impedansom v dvumernoi zadache maskirovki materialnykh tel metodom volnovogo obtekaniya”, Zh. vychisl. matem. i matem. fiz., 53:12 (2013), 2044–2061 | DOI

[19] Alekseev G. V., “Cloaking via impedance boundary condition for 2-D Helmholtz equation”, Appl. Analys., 93:2 (2014), 254–268 | DOI

[20] Alekseev G. V., “Maskirovka materialnykh tel cherez impedansnoe granichnoe uslovie dlya uravnenii Maksvella”, Dokl. AN, 453:1 (2013), 32–36 | DOI

[21] Ilinskii A. S., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vyssh. shkola, M., 1991

[22] Leontovich M. A., Teoreticheskaya fizika. Izbran. trudy, Nauka, M., 1985

[23] Caconi F., Colton D., Monk P., “The electromagnetic inverse scattering problem for partially coated Lipschitz domains”, Proc. Royal Soc. Edinburg, 134A (2004), 661–682 | DOI

[24] Monk P., Finite element methods for Maxwell's equations, Oxford University Press, 2003

[25] Alekseev G. V., Optimizatsiya v statsionarnykh zadachakh teplomassoperenosa i magnitnoi gidrodinamiki, Nauchnyi Mir, M., 2010

[26] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974

[27] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauch. kniga, Novosibirsk, 1999

[28] Sea Zh., Optimizatsiya.Teoriya i algoritmy, Mir, M., 1973