Extragradient methods for searching for equilibrium points in the parametric problem of equilibrium programming
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 12, pp. 1851-1862 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The parametric problem of equilibrium programming is examined. The mathematical programming problem, the search for a saddle-point, the multicriteria search for a Pareto point, etc. are particular cases of this parametric problem. The primal and dual variants of the extragradient method are proposed as a tool for searching for equilibrium points. The convergence of both variants is analyzed.
@article{ZVMMF_2014_54_12_a2,
     author = {L. A. Artem'eva},
     title = {Extragradient methods for searching for equilibrium points in the parametric problem of equilibrium programming},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1851--1862},
     year = {2014},
     volume = {54},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_12_a2/}
}
TY  - JOUR
AU  - L. A. Artem'eva
TI  - Extragradient methods for searching for equilibrium points in the parametric problem of equilibrium programming
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1851
EP  - 1862
VL  - 54
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_12_a2/
LA  - ru
ID  - ZVMMF_2014_54_12_a2
ER  - 
%0 Journal Article
%A L. A. Artem'eva
%T Extragradient methods for searching for equilibrium points in the parametric problem of equilibrium programming
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1851-1862
%V 54
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_12_a2/
%G ru
%F ZVMMF_2014_54_12_a2
L. A. Artem'eva. Extragradient methods for searching for equilibrium points in the parametric problem of equilibrium programming. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 12, pp. 1851-1862. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_12_a2/

[1] Antipin A. S., “Mnogokriterialnoe ravnovesnoe programmirovanie: ekstraproksimalnye metody”, Zh. vychisl. matem. i matem. fiz., 47:12 (2007), 1998–2013

[2] Antipin A. S., “Mnogokriterialnoe ravnovesnoe programmirovanie”, Tr. XIV baikalskoi shkoly-seminara “Metody optimizatsii i ikh prilozheniya”, v. 1, Matematicheskoe programmirovanie, ISEM SO RAN, Irkutsk, 2008, 22–47

[3] Vasin A. A., Morozov V. V., Teoriya igr i modeli matematicheskoi ekonomiki, MAKS Press, M., 2005

[4] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Fizmatlit, M., 2007

[5] Vasin A. A., Krasnoschekov P. S., Morozov V. V., Issledovanie operatsii, Izdatelskii tsentr “Akademiya”, M., 2008

[6] Krasnoschekov P. S., Morozov V. V., Popov N. M., Optimizatsiya v avtomatizirovannom proektirovanii, MAKS-Press, M., 2008

[7] Antipin A. S., Artemeva L. A., Vasilev F. P., “Mnogokriterialnoe ravnovesnoe programmirovanie: ekstragradientnyi metod”, Zh. vychisl. matem. i matem. fiz., 50:2 (2011), 234–241

[8] Vasilev F. P., Metody optimizatsii, v. I, II, MTsNMO, M., 2011