@article{ZVMMF_2014_54_11_a9,
author = {G. V. Grenkin and A. Yu. Chebotarev},
title = {A nonstationary problem of complex heat transfer},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1806--1816},
year = {2014},
volume = {54},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a9/}
}
TY - JOUR AU - G. V. Grenkin AU - A. Yu. Chebotarev TI - A nonstationary problem of complex heat transfer JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 1806 EP - 1816 VL - 54 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a9/ LA - ru ID - ZVMMF_2014_54_11_a9 ER -
G. V. Grenkin; A. Yu. Chebotarev. A nonstationary problem of complex heat transfer. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1806-1816. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a9/
[1] Modest M. F., Radiative heat transfer, Academic Press, New York, 2003
[2] Boas D. A., “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications”, Ph. D. Dissertation in Physics, University of Pennsylvania, 1996
[3] Siewert S. E., “An improved iterative method for solving a class of coupled conductive-radiative heat-transfer problems”, J. Quant. Spectrosc. Radiat. Transfer., 54:4 (1995), 599–605 | DOI
[4] Banoczi J. M., Kelley C. T., “A fast multilevel algorithm for the solution of nonlinear systems of conductive-radiative heat transfer equations”, SIAM J. Sci. Comput., 19:1 (1998), 266–279 | DOI
[5] Klar A., Siedow N., “Boundary layers and domain decomposition for radiative heat transfer and diffusion equations: applications to glass manufacturing process”, Eur. J. Appl. Math., 9:4 (1998), 351–372 | DOI
[6] Thömes G., Pinnau R., Seaïd M., Götz T., Klar A., “Numerical methods and optimal control for glass cooling processes”, Trans. Theory Stat. Phys., 31:4–6 (2002), 513–529 | DOI
[7] Pinnau R., Seaid M., “Simplified $\mathrm{P_N}$ models and natural convection-radiation”, Math. in Industry, 12 (2008), 397–401 | DOI
[8] Kovtanyuk A. E., Botkin N. D., Hoffmann K.-H., “Numerical simulations of a coupled conductive-radiative heat transfer model using a modified Monte Carlo method”, Int. J. Heat and Mass Transfer, 55 (2012), 649–654 | DOI
[9] Kovtanyuk A. E., “Algoritmy parallelnykh vychislenii dlya zadach radiatsionno*konduktivnogo teploobmena”, Kompyuternye issledovaniya i modelirovanie, 4:3 (2012), 543–552
[10] Kovtanyuk A. E., Chebotarev A. Yu., “An iterative method for solving a complex heat transfer problem”, Appl. Math. Comput., 219 (2013), 9356–9362 | DOI
[11] Amosov A. A., “Globalnaya razreshimost odnoi nelineinoi nestatsionarnoi zadachi s nelokalnym kraevym usloviem tipa teploobmena izlucheniem”, Differents. ur-niya, 41:1 (2005), 93–104
[12] Pinnau R., “Analysis of optimal boundary control for radiative heat transfer modelled by the $\mathrm{SP_1}$-system”, Comm. Math. Sci., 5:4 (2007), 951–969 | DOI
[13] Druet P.-E., “Existence of weak solutions to the time-dependent MHD-equations coupled to heat transfer with nonlocal radiation boundary conditions”, Nonlinear Anal. Real World Appl., 10:5 (2009), 2914–2936 | DOI
[14] Ducomet B., Necasova S., “Global weak solutions to the 1D compressible Navier-Stokes equations with radiation”, Commun. Math. Anal., 8:3 (2010), 23–65
[15] Tse O., Pinnau R., Siedow N., “Identification of temperature dependent parameters in laser-interstitial thermo therapy”, Math. Models Methods Appl. Sci., 22:9 (2012), 1–29 | DOI
[16] Kelley C. T., “Existence and uniqueness of solutions of nonlinear systems of conductive-radiative heat transfer equations”, Transport Theory Statist. Phys., 25:2 (1996), 249–260 | DOI
[17] Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffmann K.-H., “The unique solvability of a complex 3D heat transfer problem”, J. Math. Anal. Appl., 409:2 (2014), 808–815 | DOI
[18] Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffmann K.-H., “Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer”, J. Math. Anal. Appl., 412:1 (2014), 520–528 | DOI
[19] Kovtanyuk A. E., Chebotarev A. Yu., “Statsionarnaya zadacha slozhnogo teploobmena”, Zh. vychisl. matem. i matem. fiz., 54:4 (2014), 711–719 | DOI
[20] Amosov A. A., “O razreshimosti odnoi zadachi teploobmena izlucheniem”, Dokl. AN SSSR, 245:6 (1979), 1341–1344
[21] Laitinen M. T., Tiihonen T., “Heat transfer in conducting, radiating and semitransparent materials”, Math. Meth. Appl. Sci., 21 (1998), 375–392 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[22] Laitinen M., “Asymptotic analysis of conductive-radiative heat transfer”, Asymptotic Analysis, 29:3–4 (2002), 323–342
[23] Amosov A. A., “Stationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency”, J. Math. Sci., 164:3 (2010), 309–344 | DOI
[24] Amosov A. A., “Nonstationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency”, J. Math. Sci., 165:1 (2010), 1–41 | DOI
[25] Amosov A. A., “Boundary value problem for the radiation transfer equation with diffuse reflection and refraction conditions”, J. Math. Sci., 193:2 (2013), 151–176 | DOI
[26] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Nauka, M., 1971