Integral equations of plane static boundary value problems in the moment elasticity theory of inhomogeneous isotropic media
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1793-1805
Voir la notice de l'article provenant de la source Math-Net.Ru
Boundary value problems in the plane moment and simplified moment elasticity theory of inhomogeneous isotropic media are reduced to Riemann–Hilbert boundary value problems for a quasianalytic vector. Uniquely solvable integral equations over a domain are derived. As a result, weak solutions for composite inhomogeneous elastic media can be determined straightforwardly.
@article{ZVMMF_2014_54_11_a8,
author = {N. I. Martynov},
title = {Integral equations of plane static boundary value problems in the moment elasticity theory of inhomogeneous isotropic media},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1793--1805},
publisher = {mathdoc},
volume = {54},
number = {11},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a8/}
}
TY - JOUR AU - N. I. Martynov TI - Integral equations of plane static boundary value problems in the moment elasticity theory of inhomogeneous isotropic media JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 1793 EP - 1805 VL - 54 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a8/ LA - ru ID - ZVMMF_2014_54_11_a8 ER -
%0 Journal Article %A N. I. Martynov %T Integral equations of plane static boundary value problems in the moment elasticity theory of inhomogeneous isotropic media %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 1793-1805 %V 54 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a8/ %G ru %F ZVMMF_2014_54_11_a8
N. I. Martynov. Integral equations of plane static boundary value problems in the moment elasticity theory of inhomogeneous isotropic media. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1793-1805. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a8/