@article{ZVMMF_2014_54_11_a8,
author = {N. I. Martynov},
title = {Integral equations of plane static boundary value problems in the moment elasticity theory of inhomogeneous isotropic media},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1793--1805},
year = {2014},
volume = {54},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a8/}
}
TY - JOUR AU - N. I. Martynov TI - Integral equations of plane static boundary value problems in the moment elasticity theory of inhomogeneous isotropic media JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 1793 EP - 1805 VL - 54 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a8/ LA - ru ID - ZVMMF_2014_54_11_a8 ER -
%0 Journal Article %A N. I. Martynov %T Integral equations of plane static boundary value problems in the moment elasticity theory of inhomogeneous isotropic media %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 1793-1805 %V 54 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a8/ %G ru %F ZVMMF_2014_54_11_a8
N. I. Martynov. Integral equations of plane static boundary value problems in the moment elasticity theory of inhomogeneous isotropic media. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1793-1805. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a8/
[1] Bers L., “Partial differential equations and generalized analytic functions”, Proc. Nat. Ac. Se. USA, 37:1 (1951), 42–47 | DOI
[2] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988
[3] Boyarskii B. V., “Teoriya obobschennogo analiticheskogo vektora”, Annales Polonici Mathematicy, 17 (1966), 281–320
[4] Monakhov V. N., Kraevye zadachi so svobodnymi granitsami dlya ellipticheskikh sistem uravnenii, Nauka, M., 1977
[5] Monakhov V. N., “Nelineinye diffuzionnye protsessy”, Sib. matem. zh., 44:5 (2003), 1082–1097
[6] Muskhelishvili N. I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966
[7] Martynov N. I., “Kraevye zadachi teorii uprugosti neodnorodnoi sredy kak kraevye zadachi obobschennogo analiticheskogo vektora”, Matem. zh., 2007, no. 3(25), 69–77
[8] Martynov N. I., “Privedenie kraevykh zadach teorii uprugosti k kraevym zadacham obobschennogo analiticheskogo vektora”, Differentsialnye uravneniya, teoriya funktsii i prilozheniya, Tez. dokl. mezhd. nauch. konf., posvyasch. 100-let. so dnya rozhd. akad. I. N. Vekua (Novosibirsk, 2007), 518–519
[9] Alekseeva L. A., Martynov N. I., Fedorov I. O., “Primenenie kvazikonformnogo otobrazheniya v zadachakh krucheniya neodnorodnykh anizotropnykh tel”, Matem. zh., 9:3(33) (2009), 14–18
[10] Martynov N. I., “Integralnye uravneniya po oblasti v staticheskoi teorii uprugosti neodnorodnoi sredy”, Dokl. NAN RK, 2010, no. 3, 11–16
[11] Martynov N. I., Chuprasov A. A., “Application of the quasianalytical vector theory to boundary-valuy problems of the elasticity theory non-homogeneous anisotropic medium”, Materials of the II international research and practice conference “European Science and Technology” (Wiesbaden, Germany, 2012), v. II, 29–37
[12] Novatskii V., Teoriya uprugosti, Mir, M., 1975
[13] Chernykh K. F., Nelineinaya teoriya uprugosti v mashinostroitelnykh raschetakh, Mashinostroenie, L., 1986
[14] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, Gos. izd. tekh.-teor. lit., M., 1953
[15] Antontsev S. N., Monakhov V. N., “Kraevye zadachi s razryvnymi granichnymi usloviyami dlya kvazilineinykh ellipticheskikh sistem $2m$ ($m\geqslant 1$) uravnenii pervogo poryadka”, Izv. SO AN SSSR, ser. tekhn. nauk, 8:2 (1967), 65–73
[16] Muskhelishvili N. I., Singulyarnye integralnye uravneniya (granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya v matematicheskoi fizike), Fizmatlit, M., 1962
[17] Vekua N. P., Sistemy singulyarnykh integralnykh uravnenii i nekotorye granichnye zadachi, Nauka, M., 1970
[18] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977
[19] Ashyraliev Ch., Monakhov V. N., “Iteratsionnyi algoritm resheniya dvumernykh singulyarnykh integralnykh uravnenii”, Dinamika sploshnoi sredy, 1991, no. 101, 21–29
[20] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964
[21] Raenko E. A., “Kraevye zadachi dlya kvazi-golomorfnogo vektora”, Dinamika sploshnoi sredy, 2001, no. 118, 65–68