Integral equations of plane static boundary value problems in the moment elasticity theory of inhomogeneous isotropic media
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1793-1805 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Boundary value problems in the plane moment and simplified moment elasticity theory of inhomogeneous isotropic media are reduced to Riemann–Hilbert boundary value problems for a quasianalytic vector. Uniquely solvable integral equations over a domain are derived. As a result, weak solutions for composite inhomogeneous elastic media can be determined straightforwardly.
@article{ZVMMF_2014_54_11_a8,
     author = {N. I. Martynov},
     title = {Integral equations of plane static boundary value problems in the moment elasticity theory of inhomogeneous isotropic media},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1793--1805},
     year = {2014},
     volume = {54},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a8/}
}
TY  - JOUR
AU  - N. I. Martynov
TI  - Integral equations of plane static boundary value problems in the moment elasticity theory of inhomogeneous isotropic media
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1793
EP  - 1805
VL  - 54
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a8/
LA  - ru
ID  - ZVMMF_2014_54_11_a8
ER  - 
%0 Journal Article
%A N. I. Martynov
%T Integral equations of plane static boundary value problems in the moment elasticity theory of inhomogeneous isotropic media
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1793-1805
%V 54
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a8/
%G ru
%F ZVMMF_2014_54_11_a8
N. I. Martynov. Integral equations of plane static boundary value problems in the moment elasticity theory of inhomogeneous isotropic media. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1793-1805. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a8/

[1] Bers L., “Partial differential equations and generalized analytic functions”, Proc. Nat. Ac. Se. USA, 37:1 (1951), 42–47 | DOI

[2] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988

[3] Boyarskii B. V., “Teoriya obobschennogo analiticheskogo vektora”, Annales Polonici Mathematicy, 17 (1966), 281–320

[4] Monakhov V. N., Kraevye zadachi so svobodnymi granitsami dlya ellipticheskikh sistem uravnenii, Nauka, M., 1977

[5] Monakhov V. N., “Nelineinye diffuzionnye protsessy”, Sib. matem. zh., 44:5 (2003), 1082–1097

[6] Muskhelishvili N. I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966

[7] Martynov N. I., “Kraevye zadachi teorii uprugosti neodnorodnoi sredy kak kraevye zadachi obobschennogo analiticheskogo vektora”, Matem. zh., 2007, no. 3(25), 69–77

[8] Martynov N. I., “Privedenie kraevykh zadach teorii uprugosti k kraevym zadacham obobschennogo analiticheskogo vektora”, Differentsialnye uravneniya, teoriya funktsii i prilozheniya, Tez. dokl. mezhd. nauch. konf., posvyasch. 100-let. so dnya rozhd. akad. I. N. Vekua (Novosibirsk, 2007), 518–519

[9] Alekseeva L. A., Martynov N. I., Fedorov I. O., “Primenenie kvazikonformnogo otobrazheniya v zadachakh krucheniya neodnorodnykh anizotropnykh tel”, Matem. zh., 9:3(33) (2009), 14–18

[10] Martynov N. I., “Integralnye uravneniya po oblasti v staticheskoi teorii uprugosti neodnorodnoi sredy”, Dokl. NAN RK, 2010, no. 3, 11–16

[11] Martynov N. I., Chuprasov A. A., “Application of the quasianalytical vector theory to boundary-valuy problems of the elasticity theory non-homogeneous anisotropic medium”, Materials of the II international research and practice conference “European Science and Technology” (Wiesbaden, Germany, 2012), v. II, 29–37

[12] Novatskii V., Teoriya uprugosti, Mir, M., 1975

[13] Chernykh K. F., Nelineinaya teoriya uprugosti v mashinostroitelnykh raschetakh, Mashinostroenie, L., 1986

[14] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, Gos. izd. tekh.-teor. lit., M., 1953

[15] Antontsev S. N., Monakhov V. N., “Kraevye zadachi s razryvnymi granichnymi usloviyami dlya kvazilineinykh ellipticheskikh sistem $2m$ ($m\geqslant 1$) uravnenii pervogo poryadka”, Izv. SO AN SSSR, ser. tekhn. nauk, 8:2 (1967), 65–73

[16] Muskhelishvili N. I., Singulyarnye integralnye uravneniya (granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya v matematicheskoi fizike), Fizmatlit, M., 1962

[17] Vekua N. P., Sistemy singulyarnykh integralnykh uravnenii i nekotorye granichnye zadachi, Nauka, M., 1970

[18] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977

[19] Ashyraliev Ch., Monakhov V. N., “Iteratsionnyi algoritm resheniya dvumernykh singulyarnykh integralnykh uravnenii”, Dinamika sploshnoi sredy, 1991, no. 101, 21–29

[20] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964

[21] Raenko E. A., “Kraevye zadachi dlya kvazi-golomorfnogo vektora”, Dinamika sploshnoi sredy, 2001, no. 118, 65–68