@article{ZVMMF_2014_54_11_a6,
author = {S. V. Gavrilov and A. M. Denisov},
title = {Numerical method for solving a two-dimensional electrical impedance tomography problem in the case of measurements on part of the outer boundary},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1756--1766},
year = {2014},
volume = {54},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a6/}
}
TY - JOUR AU - S. V. Gavrilov AU - A. M. Denisov TI - Numerical method for solving a two-dimensional electrical impedance tomography problem in the case of measurements on part of the outer boundary JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 1756 EP - 1766 VL - 54 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a6/ LA - ru ID - ZVMMF_2014_54_11_a6 ER -
%0 Journal Article %A S. V. Gavrilov %A A. M. Denisov %T Numerical method for solving a two-dimensional electrical impedance tomography problem in the case of measurements on part of the outer boundary %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 1756-1766 %V 54 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a6/ %G ru %F ZVMMF_2014_54_11_a6
S. V. Gavrilov; A. M. Denisov. Numerical method for solving a two-dimensional electrical impedance tomography problem in the case of measurements on part of the outer boundary. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1756-1766. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a6/
[1] Borcea L., “Electrical impedance tomography”, Inverse Problems, 18 (2002), 99–136
[2] Saulnier G. J., Blue R. S., Newell J. C., Isaacson D., Edic P. M., “Electrical impedance tomography”, IEEE Signal Processing Magazine, 18:6 (2001), 31–43 | DOI
[3] Alessandrini G., Isakov V., “Analiticity and uniqueness for the inverse conductivity problem”, Rend. Ist. Mat. Univ. Trieste, 28:I, II (1996), 351–369
[4] Barceo B., Fabes E., Seo J. K., “The inverse conductivity problem with one measurement: uniqueness for convex polyhedral”, Proc. Amer. Math. Soc., 122:1 (1994), 183–189 | DOI
[5] Bellout H., Friedman A., Isakov V., “Stability for an inverse problem in potential theory”, Trans. Amer. Math. Soc., 332 (1992), 271–296 | DOI
[6] Astala K., Paivarinta L., “Calderon's inverse conductivity problem in the plane”, Ann. Math., 163 (2006), 265–299 | DOI
[7] Kang H., Seo J. K., “Layer potential technique for the inverse conductivity problem”, Inverse Problems, 12 (1996), 267–278 | DOI
[8] Bruhl M., Hanke M., “Numerical implementation of two noniterative methods for locating inclusions by impedance tomography”, Inverse Problems, 16 (2000), 1029–1042 | DOI
[9] Bruhl M., Hanke M., “Recent progress in electrical impedance tomography”, Inverse Problems, 19 (2003), 65–90
[10] Eckel H., Kress R., “Nonlinear integral equations for the inverse electrical impedance problem”, Inverse Problems, 23 (2007), 475–491 | DOI
[11] Kwon O., Seo J. K., Yoon J. R., “A real-time algorithm for the location search of discontinuous conductivities with one measurement”, Comm. Pure Appl. Math., 55:1 (2002), 1–29 | DOI
[12] Kang H., Seo J. K., Sheen D., “Numerical identification of discontinuous conductivity coefficients”, Inverse Problems, 13 (1997), 113–123 | DOI
[13] Denisov A. M., Zakharov E. V., Kalinin A. V., Kalinin V. V., “Chislennye metody resheniya nekotorykh obratnykh zadach elektrofiziologii serdtsa”, Differents. ur-niya, 45:7 (2009), 1014–1022
[14] Zou Y., Guo Z., “A review of electrical impedance techniques for breast cancer detection”, Medical Engineering and Phys., 25:2 (2003), 19–90 | DOI
[15] Zolchiver S., Radai M. M., Rosenfled M., Abboud S., “Induced current impedance technique for monitoring brain cryosurgery in a two-dimensional model of the head”, Annals of Biomedical Engineering, 30:9 (2002), 1172–1180 | DOI
[16] Gavrilov S. V., Denisov A. M., “Chislennye metody opredeleniya granitsy neodnorodnosti v kraevoi zadache dlya uravneniya Laplasa v kusochno-odnorodnoi srede”, Zh. vychisl. matem. i matem. fiz., 51:8 (2011), 1476–1489
[17] Lattes R., Lions Zh.-L., Metod kvaziobrascheniya i ego prilozheniya, Mir, M., 1970
[18] Kozlov V. A., Mazya V. G., Fomin A. V., “Ob odnom iteratsionnom metode resheniya zadachi Koshi dlya ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 31:1 (1991), 64–74
[19] Denisov A. M., Zakharov E. V., Kalinin A. V., Kalinin V. V., “Primenenie metoda regulyarizatsii Tikhonova dlya resheniya obratnoi zadachi elektrokardiografii”, Vestnik Moskovskogo un-ta. Ser. 15. Vychisl. matem. i kibernetika, 2008, no. 2, 5–10
[20] Denisov A. M., Zakharov E. V., Kalinin A. V., Kalinin V. V., “Chislennye metody resheniya nekotorykh obratnykh zadach elektrofiziologii serdtsa”, Differents. ur-niya, 45:7 (2009), 1014–1022
[21] Dihn Nho Hao, Lesnic D., “The Cauchy problem for Laplace's equation using the conjugate gradient method”, IMA J. Appl. Math., 65 (2000), 199–217 | DOI