Numerical method for solving a two-dimensional electrical impedance tomography problem in the case of measurements on part of the outer boundary
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1756-1766 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The two-dimensional electrical impedance tomography problem is considered in the case of a piecewise constant electrical conductivity. The task is to determine the unknown boundary separating the regions with different conductivity values, which are known. Input information is the electric field measured on a portion of the outer boundary of the domain. A numerical method for solving the problem is proposed, and numerical results are presented.
@article{ZVMMF_2014_54_11_a6,
     author = {S. V. Gavrilov and A. M. Denisov},
     title = {Numerical method for solving a two-dimensional electrical impedance tomography problem in the case of measurements on part of the outer boundary},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1756--1766},
     year = {2014},
     volume = {54},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a6/}
}
TY  - JOUR
AU  - S. V. Gavrilov
AU  - A. M. Denisov
TI  - Numerical method for solving a two-dimensional electrical impedance tomography problem in the case of measurements on part of the outer boundary
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1756
EP  - 1766
VL  - 54
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a6/
LA  - ru
ID  - ZVMMF_2014_54_11_a6
ER  - 
%0 Journal Article
%A S. V. Gavrilov
%A A. M. Denisov
%T Numerical method for solving a two-dimensional electrical impedance tomography problem in the case of measurements on part of the outer boundary
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1756-1766
%V 54
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a6/
%G ru
%F ZVMMF_2014_54_11_a6
S. V. Gavrilov; A. M. Denisov. Numerical method for solving a two-dimensional electrical impedance tomography problem in the case of measurements on part of the outer boundary. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1756-1766. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a6/

[1] Borcea L., “Electrical impedance tomography”, Inverse Problems, 18 (2002), 99–136

[2] Saulnier G. J., Blue R. S., Newell J. C., Isaacson D., Edic P. M., “Electrical impedance tomography”, IEEE Signal Processing Magazine, 18:6 (2001), 31–43 | DOI

[3] Alessandrini G., Isakov V., “Analiticity and uniqueness for the inverse conductivity problem”, Rend. Ist. Mat. Univ. Trieste, 28:I, II (1996), 351–369

[4] Barceo B., Fabes E., Seo J. K., “The inverse conductivity problem with one measurement: uniqueness for convex polyhedral”, Proc. Amer. Math. Soc., 122:1 (1994), 183–189 | DOI

[5] Bellout H., Friedman A., Isakov V., “Stability for an inverse problem in potential theory”, Trans. Amer. Math. Soc., 332 (1992), 271–296 | DOI

[6] Astala K., Paivarinta L., “Calderon's inverse conductivity problem in the plane”, Ann. Math., 163 (2006), 265–299 | DOI

[7] Kang H., Seo J. K., “Layer potential technique for the inverse conductivity problem”, Inverse Problems, 12 (1996), 267–278 | DOI

[8] Bruhl M., Hanke M., “Numerical implementation of two noniterative methods for locating inclusions by impedance tomography”, Inverse Problems, 16 (2000), 1029–1042 | DOI

[9] Bruhl M., Hanke M., “Recent progress in electrical impedance tomography”, Inverse Problems, 19 (2003), 65–90

[10] Eckel H., Kress R., “Nonlinear integral equations for the inverse electrical impedance problem”, Inverse Problems, 23 (2007), 475–491 | DOI

[11] Kwon O., Seo J. K., Yoon J. R., “A real-time algorithm for the location search of discontinuous conductivities with one measurement”, Comm. Pure Appl. Math., 55:1 (2002), 1–29 | DOI

[12] Kang H., Seo J. K., Sheen D., “Numerical identification of discontinuous conductivity coefficients”, Inverse Problems, 13 (1997), 113–123 | DOI

[13] Denisov A. M., Zakharov E. V., Kalinin A. V., Kalinin V. V., “Chislennye metody resheniya nekotorykh obratnykh zadach elektrofiziologii serdtsa”, Differents. ur-niya, 45:7 (2009), 1014–1022

[14] Zou Y., Guo Z., “A review of electrical impedance techniques for breast cancer detection”, Medical Engineering and Phys., 25:2 (2003), 19–90 | DOI

[15] Zolchiver S., Radai M. M., Rosenfled M., Abboud S., “Induced current impedance technique for monitoring brain cryosurgery in a two-dimensional model of the head”, Annals of Biomedical Engineering, 30:9 (2002), 1172–1180 | DOI

[16] Gavrilov S. V., Denisov A. M., “Chislennye metody opredeleniya granitsy neodnorodnosti v kraevoi zadache dlya uravneniya Laplasa v kusochno-odnorodnoi srede”, Zh. vychisl. matem. i matem. fiz., 51:8 (2011), 1476–1489

[17] Lattes R., Lions Zh.-L., Metod kvaziobrascheniya i ego prilozheniya, Mir, M., 1970

[18] Kozlov V. A., Mazya V. G., Fomin A. V., “Ob odnom iteratsionnom metode resheniya zadachi Koshi dlya ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 31:1 (1991), 64–74

[19] Denisov A. M., Zakharov E. V., Kalinin A. V., Kalinin V. V., “Primenenie metoda regulyarizatsii Tikhonova dlya resheniya obratnoi zadachi elektrokardiografii”, Vestnik Moskovskogo un-ta. Ser. 15. Vychisl. matem. i kibernetika, 2008, no. 2, 5–10

[20] Denisov A. M., Zakharov E. V., Kalinin A. V., Kalinin V. V., “Chislennye metody resheniya nekotorykh obratnykh zadach elektrofiziologii serdtsa”, Differents. ur-niya, 45:7 (2009), 1014–1022

[21] Dihn Nho Hao, Lesnic D., “The Cauchy problem for Laplace's equation using the conjugate gradient method”, IMA J. Appl. Math., 65 (2000), 199–217 | DOI