A solution method for a nonlocal problem for a system of linear differential equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1752-1755 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a system of linear ordinary differential equations supplemented by a linear nonlocal condition specified by the Stieltjes integral, a solution method is examined. Unlike the familiar methods for solving problems of this type, the proposed method does not use any specially chosen auxiliary boundary conditions. This method is numerically stable if the original problem is numerically stable.
@article{ZVMMF_2014_54_11_a5,
     author = {A. A. Abramov and L. F. Yukhno},
     title = {A solution method for a nonlocal problem for a system of linear differential equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1752--1755},
     year = {2014},
     volume = {54},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a5/}
}
TY  - JOUR
AU  - A. A. Abramov
AU  - L. F. Yukhno
TI  - A solution method for a nonlocal problem for a system of linear differential equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1752
EP  - 1755
VL  - 54
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a5/
LA  - ru
ID  - ZVMMF_2014_54_11_a5
ER  - 
%0 Journal Article
%A A. A. Abramov
%A L. F. Yukhno
%T A solution method for a nonlocal problem for a system of linear differential equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1752-1755
%V 54
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a5/
%G ru
%F ZVMMF_2014_54_11_a5
A. A. Abramov; L. F. Yukhno. A solution method for a nonlocal problem for a system of linear differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1752-1755. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a5/

[1] Abramov A. A., Ulyanova V. I., Yukhno L. F., “Nelokalnaya zadacha dlya singulyarnoi lineinoi sistemy obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 51:7 (2011), 1228–1235

[2] Abramov A. A., Yukhno L. F., “Nelineinaya spektralnaya zadacha dlya sistemy obyknovennykh differentsialnykh uravnenii s nelokalnym usloviem”, Zh. vychisl. matem. i matem. fiz., 52:2 (2012), 231–236

[3] Abramov A. A., Yukhno L. F., “Nelineinaya spektralnaya zadacha dlya singulyarnoi sistemy obyknovennykh differentsialnykh uravnenii s nelokalnym usloviem”, Differents. ur-niya, 49:7 (2013), 945–949

[4] Abramov A. A., “O perenose granichnykh uslovii dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii (variant metoda progonki)”, Zh. vychisl. matem. i matem. fiz., 1:3 (1961), 342–345

[5] Abramov A. A., “O chislennoi ustoichivosti odnogo metoda perenosa granichnykh uslovii”, Zh. vychisl. matem. i matem. fiz., 46:3 (2006), 401–406

[6] Moszỳski K., “A method of solving the boundary value problem for a system of linear ordinary differential equations”, Algoritmy, 11:3 (1964), 25–43

[7] Abramov A. A., Ulyanova V. I., Yukhno L. F., “Metod resheniya nelineinoi nesamosopryazhennoi spektralnoi zadachi dlya nekotorykh sistem lineinykh obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 44:1 (2004), 104–110