First-order regularization methods for accretive inclusions in a Banach space
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1711-1723
Voir la notice de l'article provenant de la source Math-Net.Ru
Equations with set-valued accretive operators in a Banach space are considered. Their solutions are understood in the sense of inclusions. By applying the resolvent of the set-valued part of the equation operator, these equations are reduced to ones with single-valued operators. For the constructed problems, a regularized continuous method and a regularized first-order implicit iterative process are proposed. Sufficient conditions for their strong convergence are obtained in the case of approximately specified data.
@article{ZVMMF_2014_54_11_a2,
author = {I. P. Ryazantseva},
title = {First-order regularization methods for accretive inclusions in a {Banach} space},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1711--1723},
publisher = {mathdoc},
volume = {54},
number = {11},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a2/}
}
TY - JOUR AU - I. P. Ryazantseva TI - First-order regularization methods for accretive inclusions in a Banach space JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 1711 EP - 1723 VL - 54 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a2/ LA - ru ID - ZVMMF_2014_54_11_a2 ER -
%0 Journal Article %A I. P. Ryazantseva %T First-order regularization methods for accretive inclusions in a Banach space %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 1711-1723 %V 54 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a2/ %G ru %F ZVMMF_2014_54_11_a2
I. P. Ryazantseva. First-order regularization methods for accretive inclusions in a Banach space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1711-1723. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a2/