First-order regularization methods for accretive inclusions in a Banach space
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1711-1723 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Equations with set-valued accretive operators in a Banach space are considered. Their solutions are understood in the sense of inclusions. By applying the resolvent of the set-valued part of the equation operator, these equations are reduced to ones with single-valued operators. For the constructed problems, a regularized continuous method and a regularized first-order implicit iterative process are proposed. Sufficient conditions for their strong convergence are obtained in the case of approximately specified data.
@article{ZVMMF_2014_54_11_a2,
     author = {I. P. Ryazantseva},
     title = {First-order regularization methods for accretive inclusions in a {Banach} space},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1711--1723},
     year = {2014},
     volume = {54},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a2/}
}
TY  - JOUR
AU  - I. P. Ryazantseva
TI  - First-order regularization methods for accretive inclusions in a Banach space
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1711
EP  - 1723
VL  - 54
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a2/
LA  - ru
ID  - ZVMMF_2014_54_11_a2
ER  - 
%0 Journal Article
%A I. P. Ryazantseva
%T First-order regularization methods for accretive inclusions in a Banach space
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1711-1723
%V 54
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a2/
%G ru
%F ZVMMF_2014_54_11_a2
I. P. Ryazantseva. First-order regularization methods for accretive inclusions in a Banach space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1711-1723. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a2/

[1] Ryazantseva I. P., Izbpannye glavy teopii opepatopov monotonnogo tipa, NGTU, Nizhnii Novgopod, 2008

[2] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989

[3] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988

[4] Antipin A. S., “Nepreryvnye i iterativnye protsessy s operatorami proektirovaniya i tipa proektirovaniya”, Voprosy kibernetiki. Vychisl. voprosy analiza bolshikh sistem, Nauchnyi sovet po kompleksnoi probleme “Kibernetika” AN SSSR, M., 1989, 5–43

[5] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981

[6] Ryazantseva I. P., “Nepreryvnyi metod regulyarizatsii pervogo poryadka dlya smeshannykh variatsionnykh neravenstv”, Setochnye metody dlya kraevykh zadach i prilozheniya, Materialy vosmoi Vserossiiskoi konferentsii, posvyasch. 80-letiyu so dnya rozhdeniya A. D. Lyashko (Kazan, 2010), 373–379

[7] Ryazantseva I. P., “O nepreryvnykh metodakh pervogo poryadka i ikh regulyarizovannykh variantakh dlya smeshannykh variatsionnykh neravenstv”, Differents. ur-niya, 40:7 (2012), 1020–1032

[8] Ryazantseva I. P., “Nepreryvnye metody pervogo poryadka dlya monotonnykh vklyuchenii v gilbertovom prostranstve”, Zh. vychisl. matem. i matem. fiz., 53:8 (2013), 1241–1248 | DOI

[9] Ryazantseva I. P., “Nepreryvnyi metod pervogo poryadka dlya akkretivnykh vklyuchenii v banakhovom prostranstve”, Setochnye metody dlya kraevykh zadach i prilozheniya, Materialy devyatoi Vserossiiskoi konferentsii (Kazan, 2012), 321–326

[10] Browder F. E., “Nonlinear mapping of nonexpansive and accretive type in Banach spaces”, Bull. Amer. Math. Soc., 73:6 (1967), 875–882 | DOI

[11] Alber Ya., Ryazantseva I., Nonlinear ill-posed problems of monotone type, Springer, Dordrecht, 2006

[12] Nguen Byong, Nguen Tkhi Khong Fyong, “Metody regulyarizatsii dlya nelineinykh nekorrektnykh uravnenii, soderzhaschikh m0akkretivnye otobrazheniya v banakhovom prostranstve”, Izv. vyssh. uchebn. zavedenii. Matematika, 2013, no. 2, 67–74

[13] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1988

[14] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972

[15] Apaptsin A. S., “K postpoeniyu skhodyaschikhsya itepatsionnykh ppotsessov v gilbeptovom ppostpanstve”, Tpudy po ppikladnoi matematike i kibepnetike, Ipkutsk, 1972, 7–14

[16] Morales C. H., “Surjectivity theorems for multi-valued mappings of accretive type”, Comment. Math. Univ. Carolin., 26 (1985), 397–413

[17] He X., “On $\phi$-strongly accretive mappings and some set-valued variational problems”, J. Math. Anal. and Appl., 227 (2003), 504–511