Parametrized tiling: Accurate approximations and analysis of global dependences
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1817-1828

Voir la notice de l'article provenant de la source Math-Net.Ru

Aspects of parametrized tiling as applied to algorithms whose computational domain can be represented as a convex polyhedron are studied. A method for constructing approximations to a set of tiles is developed, and necessary and sufficient conditions for their accuracy are stated. Formulas for determining intertile vectors are derived. A formal representation of iteration sets generating such vectors is obtained in the form of polyhedra with explicitly expressed boundaries.
@article{ZVMMF_2014_54_11_a10,
     author = {S. V. Bakhanovich and P. I. Sobolevskii},
     title = {Parametrized tiling: {Accurate} approximations and analysis of global dependences},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1817--1828},
     publisher = {mathdoc},
     volume = {54},
     number = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a10/}
}
TY  - JOUR
AU  - S. V. Bakhanovich
AU  - P. I. Sobolevskii
TI  - Parametrized tiling: Accurate approximations and analysis of global dependences
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1817
EP  - 1828
VL  - 54
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a10/
LA  - ru
ID  - ZVMMF_2014_54_11_a10
ER  - 
%0 Journal Article
%A S. V. Bakhanovich
%A P. I. Sobolevskii
%T Parametrized tiling: Accurate approximations and analysis of global dependences
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1817-1828
%V 54
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a10/
%G ru
%F ZVMMF_2014_54_11_a10
S. V. Bakhanovich; P. I. Sobolevskii. Parametrized tiling: Accurate approximations and analysis of global dependences. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1817-1828. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a10/