Parametrized tiling: Accurate approximations and analysis of global dependences
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1817-1828
Voir la notice de l'article provenant de la source Math-Net.Ru
Aspects of parametrized tiling as applied to algorithms whose computational domain can be represented as a convex polyhedron are studied. A method for constructing approximations to a set of tiles is developed, and necessary and sufficient conditions for their accuracy are stated. Formulas for determining intertile vectors are derived. A formal representation of iteration sets generating such vectors is obtained in the form of polyhedra with explicitly expressed boundaries.
@article{ZVMMF_2014_54_11_a10,
author = {S. V. Bakhanovich and P. I. Sobolevskii},
title = {Parametrized tiling: {Accurate} approximations and analysis of global dependences},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1817--1828},
publisher = {mathdoc},
volume = {54},
number = {11},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a10/}
}
TY - JOUR AU - S. V. Bakhanovich AU - P. I. Sobolevskii TI - Parametrized tiling: Accurate approximations and analysis of global dependences JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 1817 EP - 1828 VL - 54 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a10/ LA - ru ID - ZVMMF_2014_54_11_a10 ER -
%0 Journal Article %A S. V. Bakhanovich %A P. I. Sobolevskii %T Parametrized tiling: Accurate approximations and analysis of global dependences %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 1817-1828 %V 54 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a10/ %G ru %F ZVMMF_2014_54_11_a10
S. V. Bakhanovich; P. I. Sobolevskii. Parametrized tiling: Accurate approximations and analysis of global dependences. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1817-1828. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a10/