Parametrized tiling: Accurate approximations and analysis of global dependences
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1817-1828 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Aspects of parametrized tiling as applied to algorithms whose computational domain can be represented as a convex polyhedron are studied. A method for constructing approximations to a set of tiles is developed, and necessary and sufficient conditions for their accuracy are stated. Formulas for determining intertile vectors are derived. A formal representation of iteration sets generating such vectors is obtained in the form of polyhedra with explicitly expressed boundaries.
@article{ZVMMF_2014_54_11_a10,
     author = {S. V. Bakhanovich and P. I. Sobolevskii},
     title = {Parametrized tiling: {Accurate} approximations and analysis of global dependences},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1817--1828},
     year = {2014},
     volume = {54},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a10/}
}
TY  - JOUR
AU  - S. V. Bakhanovich
AU  - P. I. Sobolevskii
TI  - Parametrized tiling: Accurate approximations and analysis of global dependences
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1817
EP  - 1828
VL  - 54
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a10/
LA  - ru
ID  - ZVMMF_2014_54_11_a10
ER  - 
%0 Journal Article
%A S. V. Bakhanovich
%A P. I. Sobolevskii
%T Parametrized tiling: Accurate approximations and analysis of global dependences
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1817-1828
%V 54
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a10/
%G ru
%F ZVMMF_2014_54_11_a10
S. V. Bakhanovich; P. I. Sobolevskii. Parametrized tiling: Accurate approximations and analysis of global dependences. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1817-1828. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a10/

[1] Xue J., Loop Tiling for parallelism, Kluwer Academic Publishers, USA, 2000

[2] Renganarayanan L., Kim D., Rajopadhye S., Strout M., “Parameterized tiled loops for free”, SIGPLAN Conference on Programming Language Design and Implementation, ASM Press, New York, USA, 2007, 405–414

[3] Krishnamoorthy S., Baskaran M., Bondhugula U., Ramanujam J., Rountev A., Sadayappan P., “Effective automatic parallelization of stencil computations”, Proc. 2007 ACM SIGPLAN Conference on Program. Language Design and Implementation, 235–244

[4] Kim D., Rajopadhye S., Parameterized tiling for imperfectly nested loops, Technical Rept CS-09-101, Colorado State University, Department of Computer Sci., February 2009

[5] Baskaran M., Hartono A., Henretty T., Ramanujam J., Sadayappan P., “Parameterized tiling revisited”, CGO'10 (2010, Toronto, Canada)

[6] Tavarageri S., Hartono A., Baskaran M., Pouchet L.-N., Ramanujam J., Sadayappan P., “Parametric tiling of affine loop nests”, Proc. 15$^{\mathrm{th}}$ Workshop on Compilers for Parallel Computers, CPC 2010 (Vienna, Austria, July 2010)

[7] Hartono A., Baskaran M., Ramanujam J., Sadayappan P., “DynTile: Parametric tiled loop generation for parallel execution on multicore processors”, 24$^{\mathrm{th}}$ Intern. Parallel and Distributed Processing Symposium, 2010 IPDPS Conference (Atlanta, April, 2010)

[8] Bandishti V., Pananilath I., Bondhugula U., “Tiling stencil computations to maximize parallelism”, Proc. Supercomput., IEEE Computer Soc. Press, Los Alamitos, CA, USA, 2012

[9] Sobolevskii P. I., Bakhanovich S. V., “Mnogogrannye approksimatsii mnozhestva tailov”, Tr. In-ta matem. NAN Belarusi, 17:2 (2009), 84–93

[10] Likhoded N. A., Sobolevskii P. I., “Razbienie na taily oblastei, zadannykh peresecheniem parallelepipedov”, Vestsi NAN Belarusi. Ser. fiz.-matem. navuk, 2012, no. 1, 110–116

[11] Sobolevskii P. I., Bakhanovich S. V., “Tochnye approksimatsii mnozhestva tailov, pokryvayuschikh oblast vychislenii”, Dokl. NAN Belarusi, 57:1 (2013), 21–26