Numerical algorithm for solving quadratic matrix equations of a certain class
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1707-1710
Cet article a éte moissonné depuis la source Math-Net.Ru
A relationship is found between the solutions to the quadratic matrix equation $X^TDX+AX+X^TB+C=0$, where all the matrix coefficients are $n\times n$ matrices, and the neutral subspaces of the $2n\times 2n$ matrix $2n\times 2n$-матрицы $M=\begin{pmatrix}C&A\\B&D\end{pmatrix}$. This relationship is used to design an algorithm for solving matrix equations of the indicated type. Numerical results obtained with the help of the proposed algorithm are presented.
@article{ZVMMF_2014_54_11_a1,
author = {Yu. O. Vorontsov and Kh. D. Ikramov},
title = {Numerical algorithm for solving quadratic matrix equations of a certain class},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1707--1710},
year = {2014},
volume = {54},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a1/}
}
TY - JOUR AU - Yu. O. Vorontsov AU - Kh. D. Ikramov TI - Numerical algorithm for solving quadratic matrix equations of a certain class JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 1707 EP - 1710 VL - 54 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a1/ LA - ru ID - ZVMMF_2014_54_11_a1 ER -
%0 Journal Article %A Yu. O. Vorontsov %A Kh. D. Ikramov %T Numerical algorithm for solving quadratic matrix equations of a certain class %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 1707-1710 %V 54 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a1/ %G ru %F ZVMMF_2014_54_11_a1
Yu. O. Vorontsov; Kh. D. Ikramov. Numerical algorithm for solving quadratic matrix equations of a certain class. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1707-1710. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a1/
[1] Ikramov X. D., “O razreshimosti odnogo klassa kvadratichnykh matrichnykh uravnenii”, Dokl. AN, 455:2 (2014), 135–137 | DOI
[2] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989
[3] Ikramov X. D., “Razlozhenie Takagi simmetrichnoi unitarnoi matritsy kak konechnyi algoritm”, Zh. vychisl. matem. i matem. fiziki, 52:1 (2012), 4–7