Numerical algorithm for solving quadratic matrix equations of a certain class
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1707-1710 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A relationship is found between the solutions to the quadratic matrix equation $X^TDX+AX+X^TB+C=0$, where all the matrix coefficients are $n\times n$ matrices, and the neutral subspaces of the $2n\times 2n$ matrix $2n\times 2n$-матрицы $M=\begin{pmatrix}C&A\\B&D\end{pmatrix}$. This relationship is used to design an algorithm for solving matrix equations of the indicated type. Numerical results obtained with the help of the proposed algorithm are presented.
@article{ZVMMF_2014_54_11_a1,
     author = {Yu. O. Vorontsov and Kh. D. Ikramov},
     title = {Numerical algorithm for solving quadratic matrix equations of a certain class},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1707--1710},
     year = {2014},
     volume = {54},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a1/}
}
TY  - JOUR
AU  - Yu. O. Vorontsov
AU  - Kh. D. Ikramov
TI  - Numerical algorithm for solving quadratic matrix equations of a certain class
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1707
EP  - 1710
VL  - 54
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a1/
LA  - ru
ID  - ZVMMF_2014_54_11_a1
ER  - 
%0 Journal Article
%A Yu. O. Vorontsov
%A Kh. D. Ikramov
%T Numerical algorithm for solving quadratic matrix equations of a certain class
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1707-1710
%V 54
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a1/
%G ru
%F ZVMMF_2014_54_11_a1
Yu. O. Vorontsov; Kh. D. Ikramov. Numerical algorithm for solving quadratic matrix equations of a certain class. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 11, pp. 1707-1710. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_11_a1/

[1] Ikramov X. D., “O razreshimosti odnogo klassa kvadratichnykh matrichnykh uravnenii”, Dokl. AN, 455:2 (2014), 135–137 | DOI

[2] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989

[3] Ikramov X. D., “Razlozhenie Takagi simmetrichnoi unitarnoi matritsy kak konechnyi algoritm”, Zh. vychisl. matem. i matem. fiziki, 52:1 (2012), 4–7