@article{ZVMMF_2014_54_10_a9,
author = {E. S. Baranovskii},
title = {Flows of a polymer fluid in domain with impermeable boundaries},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1648--1655},
year = {2014},
volume = {54},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a9/}
}
TY - JOUR AU - E. S. Baranovskii TI - Flows of a polymer fluid in domain with impermeable boundaries JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 1648 EP - 1655 VL - 54 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a9/ LA - ru ID - ZVMMF_2014_54_10_a9 ER -
E. S. Baranovskii. Flows of a polymer fluid in domain with impermeable boundaries. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 10, pp. 1648-1655. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a9/
[1] Pavlovskii V. A., “K voprosu o teoreticheskom opisanii slabykh vodnykh rastvorov polimerov”, Dokl. AN SSSR, 200:4 (1971), 809–812
[2] Oskolkov A. P., “O edinstvennosti i razreshimosti v tselom kraevykh zadach dlya uravnenii dvizheniya vodnykh rastvorov polimerov”, Kraevye zadachi matem. fiz. i smezhnye voprosy teorii funktsii. 7, Zap. nauchn. sem. LOMI, 38, 1973, 98–136
[3] Oskolkov A. P., “O nestatsionarnykh techeniyakh vyazko-uprugikh zhidkostei”, Kraevye zadachi matematicheskoi fiziki. 12, Tr. MIAN SSSR, 159, 1983, 103–131
[4] Sviridyuk G. A., Sukacheva T. G., “O razreshimosti nestatsionarnoi zadachi dinamiki neszhimaemoi vyazkouprugoi zhidkosti”, Matem. zametki, 63:3 (1998), 442–450 | DOI
[5] Korpusov M. O., Sveshnikov A. G., “O razrushenii resheniya sistemy uravnenii Oskolkova”, Matem. sb., 200:4 (2009), 83–108 | DOI
[6] Baranovskii E. S., “Issledovanie matematicheskikh modelei, opisyvayuschikh techeniya zhidkosti Foigta s lineinoi zavisimostyu komponent skorosti ot dvukh prostranstvennykh peremennykh”, Vestn. VGU. Seriya: Fizika. Matematika, 2011, no. 1, 77–93
[7] Ladyzhenskaya O. A., “O globalnoi odnoznachnoi razreshimosti dvumernykh zadach dlya vodnykh rastvorov polimerov”, Kraevye zadachi matem. fiz. i smezhnye voprosy teorii funktsii. 28, Zap. nauchn. sem. POMI, 243, 1997, 138–153
[8] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981
[9] Lions Zh. L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972
[10] Galdi G. P., An introduction to the mathematical theory of the Navier–Stokes equations. Steady-state problems, Springer, New York, 2011
[11] Lions Zh. L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971
[12] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978
[13] Adams R. A., Fournier J. J. F., Sobolev spaces, 2nd ed., Elsevier, Amsterdam, 2003
[14] Sakiadis V. S., “Boundary-layer behavior on continuous solid surfaces. I: Boundary-layer equations for two-dimensional and axisymmetric flow”, AIChE J., 7 (1961), 26–28 | DOI
[15] Crane L. J., “Flow past a stretching plate”, Z. Angew Math. Phys., 21 (1970), 645–647 | DOI
[16] Sajid M., “Homotopy analysis of stretching flows with partial slip”, Int. J. of Nonlinear Sci., 8:3 (2009), 284–290
[17] Weidman P. D., Magyari E., “Generalized Crane flow induced by continuous surfaces stretching with arbitrary velocities”, Acta Mechanica, 209:3–4 (2010), 353–362 | DOI