Method for solving the equations describing the triple-deck interaction of a three-dimensional boundary layer with an outer inviscid transonic flow
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 10, pp. 1630-1647 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approach is developed for solving boundary value problems describing three-dimensional steady flows in the region where a laminar boundary layer interacts with an outer inviscid transonic flow. By applying the method, the flow over a roughness element is computed within the classical triple-deck theory, the asymptotic height of the roughness element corresponding to nonseparated flow is determined, and separated flow patterns are constructed.
@article{ZVMMF_2014_54_10_a8,
     author = {G. L. Korolev},
     title = {Method for solving the equations describing the triple-deck interaction of~a~three-dimensional boundary layer with an outer inviscid transonic flow},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1630--1647},
     year = {2014},
     volume = {54},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a8/}
}
TY  - JOUR
AU  - G. L. Korolev
TI  - Method for solving the equations describing the triple-deck interaction of a three-dimensional boundary layer with an outer inviscid transonic flow
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1630
EP  - 1647
VL  - 54
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a8/
LA  - ru
ID  - ZVMMF_2014_54_10_a8
ER  - 
%0 Journal Article
%A G. L. Korolev
%T Method for solving the equations describing the triple-deck interaction of a three-dimensional boundary layer with an outer inviscid transonic flow
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1630-1647
%V 54
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a8/
%G ru
%F ZVMMF_2014_54_10_a8
G. L. Korolev. Method for solving the equations describing the triple-deck interaction of a three-dimensional boundary layer with an outer inviscid transonic flow. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 10, pp. 1630-1647. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a8/

[1] Neiland V. Ya., “K teorii otryva laminarnogo pogranichnogo sloya v sverkhzvukovom potoke”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1969, no. 4, 53–57

[2] Stewartson K., Williams P. G., “Self-induced separation”, Proc. Roy. Soc. London. Ser. A, 312:1509 (1969), 181–206 | DOI

[3] Sychev V. V., Ruban A. I., Sychev Vik. V., Korolev G. L., Asimptoticheskaya teoriya otryvnykh techenii, Nauka, M., 1987, 256 pp.

[4] Messiter A. F., Feo A., Melnic R. E., “Shock-wave strength for separation of a laminar boundary layer at transonic speeds”, AIAA J., 9:6 (1971), 1197–1198 | DOI

[5] Diesperov V. N., Korolev G. L., “Vozniknovenie sverkhzvukovykh zon i zon lokalnogo otryva pri transzvukovom statsionarnom obtekanii nerovnosti poverkhnosti v rezhime svobodnogo vzaimodeistviya”, Izv. RAN. Mekhan. zhidkosti i gaza, 2003, no. 1, 50–59

[6] Bowles R. I., Smith F. T., “On boundary-layer transition in transonic flow”, J. Engineering Math., 27:3 (1993), 309–342 | DOI

[7] Duck P. W., Burgraf O. R., “Spectral solutions for the three-dimensional triple-deck flow over surface topography”, J. Fluid Mech., 162 (1986), 1–22 | DOI

[8] Bos S., Kravtsova M. A., Ruban A. I., “Numerical analysis of 3d boundary-layer separation”, EUROMECH 384 Colloquium on Steady and Unsteady Separated Flows (Manchester, UK, July 6–9, 1998)

[9] Dudin G. N., Lyzhin V. O., “Ob odnom metode rascheta rezhima silnogo vyazkogo vzaimodeistviya na treugolnom kryle”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1983, no. 4, 119–124

[10] Lipatov I. I., Vinogradov I. V., “Three-dimensional flow near surface distortions for the compensation regime”, Phil. Trans. Roy. Soc. Lond. Ser. A, 358:1777 (2000), 3143–3153 | DOI

[11] Korolev G. L., “Metod resheniya uravnenii teorii vzaimodeistviya prostranstvennogo pogranichnogo sloya i vneshnego nevyazkogo potoka”, Zh. vychisl. matem. i matem. fiz., 47:3 (2007), 506–529

[12] Zhuk V. I., Volny Tollmina–Shlikhtinga i solitony, Nauka, M., 2001, 167 pp.

[13] Smith F. T., “A three-dimensional boundary layer separation”, J. Fluid Mech., 99 (1991), 185 | DOI

[14] Delery J. M., Formery M. J., “A finite difference method for inverse solutions of 3-d turbulent boundary-layer flow”, AIAA 21-st aerospace science meeting (Jan. 10–13, 1983, ReNNevada), 1983, AIAA 83-0301

[15] Bodonyi R. J., Duck P., “A numerical method for treating strongly interactive three-dimensional viscous-inviscid flows”, Intl. J. Comput. Fluids, 16:3 (1988), 279–290 | DOI

[16] Karas O. V., Kovalev V. E., “Primenenie obratnogo metoda rascheta trekhmernogo pogranichnogo sloya k zadache obtekaniya kryla s uchetom vliyaniya vyazkosti”, Uchen. zap. TsAGI, 20:5 (1989), 1–11

[17] Timoshin S. N., Smith F. T., “Singularities encountered in three-dimensional boundary layers under adverse or favourable pressure gradient”, Phil. Trans. Roy. Soc. Lond. Ser. A, 352:1698 (1995), 45–87 | DOI

[18] Smith F. T., Sykes R. I., Brighton P. W. M., “A two-dimensional boundary layer encountering a three-dimensional hump”, J. Fluid Mech., 83:1 (1977), 163–176 | DOI

[19] Ryzhov O. S., “O nestatsionarnom prostranstvennom pogranichnom sloe svobodno vzaimodeistvuyuschem s vneshnim potokom”, Prikl. matem. i mekhan., 44:6 (1980), 1035–1052

[20] Bogolepov V. V., “Issledovanie malykh prostranstvennykh vozmuschenii laminarnogo pogranichnogo sloya”, Prikl. mekhan. i tekhn. fiz., 1987, no. 5, 69–79

[21] Krasilschikova E. A., Krylo konechnogo razmakha v szhimaemom potoke, Gostekhizdat, M.–L., 1952

[22] Ruban A. I., Sychev V. V., “Giperzvukovoe vyazkoe techenie gaza okolo kryla malogo udlineniya”, Uchen. zap. TsAGI, 5:5 (1973), 42–51

[23] Lipatov I. I., “Prostranstvennoe obtekanie maloi nerovnosti v rezhime slabogo giperzvukovogo vzaimodeistviya”, Uchen. zap. TsAGI, 11:2 (1980), 122–127

[24] Smith F. T., “Steady and unsteady 3-D interactive boundary layers”, Comput. and Fluids, 20:3 (1991), 243–268 | DOI

[25] Sychev Vik. V., “O prostranstvennykh techeniyakh okolo nerovnostei na poverkhnosti osesimmetrichnogo tela”, Uchen. zap. TsAGI, 24:1 (1993), 12–28

[26] Neiland S. Ya., Bogolepov V. V., Dudin G. N., Lipatov I. I., Asimptoticheskaya teoriya sverkhzvukovykh techenii vyazkogo gaza, Fizmatlit, M., 2004, 456 pp.

[27] Zhuk V. I., Ryzhov O. S., “O lokalno-nevyazkikh vozmuscheniyakh v pogranichnom sloe s samoindutsirovannym davleniem”, Dokl. AN SSSR, 263:1 (1982), 56–59

[28] Bodonyi R. J., Kluwick A., “Supercritical transonic trailing-edge flow”, Quart. J. Mech. and Appl. Math., 35:2 (1982), 265–277 | DOI

[29] Kluwick A., Kornfeld M., “Weakly 3d effects upstream a surface mounted obstacle in transonic flows”, Aymptotic methods in fluid mechanics: servey and recent advances, CISM Courses and Lectures, 523, Springer, Wien–New York, 2010, 409–414

[30] Guzaeva K. V., Zhuk V. I., “K asimptoticheskoi teorii vozmuschenii, indutsiruyuschikh sobstvennyi gradient davleniya v pogranichnom sloe na plastine v transzvukovom potoke”, Zh. vychisl. matem. i matem. fiz., 48:1 (2008), 127–145

[31] Korolev G. L., “Ob odnom metode resheniya zadach asimptoticheskoi teorii vzaimodeistviya pogranichnogo sloya s vneshnim potokom”, Zh. vychisl. matem. i matem. fiz., 27:8 (1987), 1224–1232

[32] Murman E. M., Cole J. D., “Calculation of plane steady transonic flow”, AIAA J., 9:1 (1970), 114–121

[33] Liepmann H. F., “The interaction between boundary layer and shock waves in transonic flow”, J. Aeronaut. Sci., 13:12 (1946), 623–638 | DOI

[34] Moulden T. H., Fundamentals of Transonic Flow, Willey, N.Y., 1984, 332 pp.

[35] Lipman G. V., Roshko A., Elementy gazovoi dinamiki, Izd-vo inostr. lit.-ry, M., 1960, 518 pp.

[36] Nienwland G. Y., Spee B. M., “Transonic airfoils: recent developments in theory, experiment, and design”, Annu. Rev. Fluid Mech., 5 (1973), 119–150 | DOI

[37] Bers L., Matematicheskie voprosy dozvukovoi i okolozvukovoi gazovoi dinamiki, Izd-vo inostr. lit-ry, M., 1961, 208 pp.

[38] Ryzhov O. S., “O nestatsionarnom pogranichnom sloe s samoindutsirovannym davleniem pri okolozvukovykh skorostyakh vneshnego potoka”, Dokl. AN SSSR, 236:5 (1977), 1091–1094

[39] Diesperov V. N., Korolev G. L., “Vozniknovenie sverkhzvukovykh zon i zon lokalnogo otryva pri transzvukovom statsionarnom obtekanii nerovnosti na poverkhnosti tela vrascheniya v rezhime svobodnogo vzaimodeistviya”, Zh. vychisl. matem. i matem. fiz., 49:7 (2009), 1295–1305