Propagation and interaction of short waves in a homogeneous transversally isotropic elastic medium
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 10, pp. 1608-1617
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy problem for the equations of motion of a homogeneous transversally isotropic elastic medium is considered. For its solution, a short-wavelength asymptotic expansion is constructed, which is also applicable near specific directions. The resonance set, i.e., the set of points at which the ray expansion cannot be used is described.
@article{ZVMMF_2014_54_10_a6,
     author = {I. N. Shchitov},
     title = {Propagation and interaction of short waves in a homogeneous transversally isotropic elastic medium},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1608--1617},
     year = {2014},
     volume = {54},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a6/}
}
TY  - JOUR
AU  - I. N. Shchitov
TI  - Propagation and interaction of short waves in a homogeneous transversally isotropic elastic medium
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1608
EP  - 1617
VL  - 54
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a6/
LA  - ru
ID  - ZVMMF_2014_54_10_a6
ER  - 
%0 Journal Article
%A I. N. Shchitov
%T Propagation and interaction of short waves in a homogeneous transversally isotropic elastic medium
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1608-1617
%V 54
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a6/
%G ru
%F ZVMMF_2014_54_10_a6
I. N. Shchitov. Propagation and interaction of short waves in a homogeneous transversally isotropic elastic medium. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 10, pp. 1608-1617. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a6/

[1] Molotkov L. A., “O odnom vnutrennem istochnike v transversalno-izotropnoi uprugoi srede”, Matematicheskie voprosy teorii rasprostraneniya voln. 29, Zap. nauchn. seminarov POMI, 264, SPb., 2000, 238–249

[2] Popov M. M., “Volny SH v odnorodnoi transversalno izotropnoi srede, vozbuzhdaemye sosredotochennoi siloi”, Matematicheskie voprosy teorii rasprostraneniya voln. 29, Zap. nauchn. seminarov POMI, 264, SPb., 2000, 285–298

[3] Popov M. M., “Asimptotika volnovogo polya v okrestnosti osi simmetrii transversalno izotropnoi odnorodnoi sredy”, Matematicheskie voprosy teorii rasprostraneniya voln. 30, Zap. nauchn. semin. POMI, 275, SPb., 2001, 199–211

[4] Landau L. D., Lifshits E. M., Teoriya uprugosti, Nauka, M., 1987

[5] Petrashen G. I., Rasprostranenie voln v anizotropnykh uprugikh sredakh, Nauka, L., 1980

[6] Kravtsov Yu. A., Orlov Yu. I., Geometricheskaya optika neodnorodnykh sred, Nauka, M., 1980

[7] Babich V. M., Buldyrev V. S., Molotkov I. M., Prostranstvenno-vremennói luchevoi metod, Izd-vo LGU, L., 1985

[8] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976

[9] Vainberg B. R., Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki, Izd-vo MGU, M., 1982

[10] Kucherenko V. V., “Asimptotika reshenii sistemy $A\left(x,ih\frac{\partial}{\partial x}\right)u=0$ pri $h\to 0$ v sluchae kharakteristik peremennoi kratnosti”, Izvestiya AN SSSR. Matematika, 58:3 (1974), 625–650

[11] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967

[12] Kurant R., Gilbert D., Metody matematicheskoi fiziki, v. 2, OGIZ, M.; Gostekhizdat, 1945

[13] Fedoryuk M. V., Asimptotika: integraly i ryady, Nauka, M., 1987