Asymptotics of the front motion in the reaction-diffusion-advection problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 10, pp. 1594-1607 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A singularly perturbed initial boundary value problem is considered for a parabolic equation that is known in application as the reaction-diffusion-advection equation. An asymptotic expansion of solutions with a moving front is constructed. This asymptotics is proved by the method of differential inequalities, which is based on well-known comparison theorems and develops the ideas of formal asymptotics for constructing upper and lower solutions in singularly perturbed problems with internal and boundary layers.
@article{ZVMMF_2014_54_10_a5,
     author = {E. A. Antipov and N. T. Levashova and N. N. Nefedov},
     title = {Asymptotics of the front motion in the reaction-diffusion-advection problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1594--1607},
     year = {2014},
     volume = {54},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a5/}
}
TY  - JOUR
AU  - E. A. Antipov
AU  - N. T. Levashova
AU  - N. N. Nefedov
TI  - Asymptotics of the front motion in the reaction-diffusion-advection problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1594
EP  - 1607
VL  - 54
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a5/
LA  - ru
ID  - ZVMMF_2014_54_10_a5
ER  - 
%0 Journal Article
%A E. A. Antipov
%A N. T. Levashova
%A N. N. Nefedov
%T Asymptotics of the front motion in the reaction-diffusion-advection problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1594-1607
%V 54
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a5/
%G ru
%F ZVMMF_2014_54_10_a5
E. A. Antipov; N. T. Levashova; N. N. Nefedov. Asymptotics of the front motion in the reaction-diffusion-advection problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 10, pp. 1594-1607. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a5/

[1] Nefedov N. N., Bozhevolnov Yu. V., “Dvizhenie fronta v parabolicheskoi zadache reaktsiya-diffuziya”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 276–285

[2] Levashova N. T., Nefëdov N. N., Yagremtsev A. V., “Kontrastnye struktury v uravneniyakh reaktsiya-diffuziya-advektsiya v sluchae sbalansirovannoi advektsii”, Zh. vychisl. matem. i matem. fiz., 53:3 (2013), 365–376 | DOI

[3] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shkola, M., 1990

[4] Vasileva A. V., Butuzov V. F., Nefedov N. N., “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundamentalnaya i prikl. matem., 4:3 (1998), 799–851

[5] Vasileva A. B., Butuzov V. F., Nefedov N. N., “Asimptoticheskaya teoriya kontrastnykh struktur”, Avtomatika i telemekhan., 1997, no. 7, 4–32

[6] Butuzov V. F., “Kontrastnye struktury tipa vspleska v parabolicheskoi sisteme dvukh singulyarno vozmuschennykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 37:4 (1997), 415–428

[7] Nefedov N. N., “Metod differentsialnykh neravenstv dlya nekotorykh klassov nelineinykh singulyarno vozmuschennykh zadach s vnutrennimi sloyami”, Differents. ur-niya, 31:7 (1995), 1142–1149

[8] Sattinger D. H., “Monotone methods in elliptic and parabolic boundary value problems”, Indiana Univ. J., 21:11 (1972), 979–1001 | DOI

[9] Nefedov N. N., “Obschaya skhema asimptoticheskogo issledovaniya ustoichivykh kontrastnykh struktur”, Nelineinaya dinamika, 6:1 (2010), 181–186

[10] Vasileva A. B., Butuzov V. F., Nefedov N. N., “Singulyarno vozmuschennye zadachi s pogranichnymi i vnutrennimi sloyami”, Tr. MIAI, 268, 2010, 268–283 | MR | Zbl

[11] Nefedov N. N., Recke L., Schnieder K. R., “Existence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion equations”, J. Math. Analys. Appl., 405 (2013), 90–103 | DOI