@article{ZVMMF_2014_54_10_a4,
author = {A. D. Savel'ev},
title = {Multioperator representation of composite compact schemes},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1580--1593},
year = {2014},
volume = {54},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a4/}
}
A. D. Savel'ev. Multioperator representation of composite compact schemes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 10, pp. 1580-1593. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a4/
[1] Tolstykh A. I., “O metode chislennogo resheniya uravnenii Nave–Stoksa szhimaemogo gaza v shirokom diapazone chisel Reinoldsa”, Dokl. AN SSSR, 210:1 (1973), 48–51
[2] Tolstykh A., High accuracy non-centered compact schemes for fluid dynamics applications, World Sci., Singapore, 1994
[3] Lele S. K., “Impact finite difference schemes with spectral-like resolution”, J. Comput. Phys., 102 (1992), 16–42 | DOI
[4] Lele S., Lele S. K., Moin P., “Direct numerical simulation of isotropic turbulence interacting with a shock wave”, J. Fluid Mech., 251 (1993), 533–562 | DOI
[5] Visbal M. R., Gaitonde D. V., “On the use of high-order finite-difference schemes on curvilinear and deforming meshes”, J. Comput. Phys., 181 (2002), 155–185 | DOI
[6] Yee H. C., Sandham N. D., Djomehri M. J., “Low-dissipative high-order shock-capturing methods using characteristic-based filters”, J. Comput. Phys., 150 (1999), 199–238 | DOI
[7] Tolstykh A. I., “Multioperatornye skhemy proizvolnogo poryadka, ispolzuyuschie netsentrirovannye kompaktnye approksimatsii”, Dokl. RAN, 366:3 (1999), 319–322
[8] Tolstykh A. I., “O postroenii skhem zadannogo poryadka s lineinymi kombinatsiyami operatorov”, Zh. vychisl. matem. i matem. fiz., 40:8 (2000), 1206–1220
[9] Lipavskii M. V., Tolstykh A. I., Chigerev E. N., “O chislennom modelirovanii neustoichivosti sdvigovykh sloev na osnove skhemy s multioperatornymi approksimatsiyami devyatogo poryadka”, Zh. vychisl. matem. i matem. fiz., 53:3 (2013), 417–432 | DOI
[10] Pulliam T. H., “Artificial dissipation models for the Euler equations”, AIAA J., 24:12 (1986), 1931–1940 | DOI
[11] Savelev A. D., “Sostavnye kompaktnye skhemy vysokogo poryadka dlya modelirovaniya techenii vyazkogo gaza”, Zh. vychisl. matem. i matem. fiz., 47:8 (2007), 1389–1403
[12] Savelev A. D., “Primenenie raznostnykh operatorov vysokogo poryadka pri chislennom modelirovanii zadach aerodinamiki”, Matem. modelirovanie, 24:4 (2012), 80–94
[13] Savelev A. D., “O strukture vnutrennei dissipatsii sostavnykh kompaktnykh skhem dlya resheniya zadach vychislitelnoi gazovoi dinamiki”, Zh. vychisl. matem. i matem. fiz., 49:12 (2009), 2232–2246
[14] Tolstykh A. I., “O multioperatornom metode postroeniya approksimatsii i skhem proizvolno vysokogo poryadka”, Zh. vychisl. matem. i matem. fiz., 51:1 (2011), 56–73
[15] Tolstykh A. I., “Development of arbitrary-order multioperators-based schemes for parallel calculations. 1: Higher-than-fifth-order approximations to convection terms”, J. Comput. Phys., 225 (2007), 2333–2353 | DOI
[16] Zaitsev A. V., Kudashov V. N., “Tochnye resheniya uravneniya dinamiki vyazkoi sredy v kanale”, Kholodilnaya tekhn. i konditsionirovanie, 2012, no. 2, 11–14
[17] Wilcox D. C., “Reassessment of the scale-determing equation for advanced turbulence models”, AIAA J., 22:8 (1984), 1139–1145 | DOI
[18] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1987
[19] Spalart P. R., Allmaras S. R., A one-equation turbulence model for aerodynamic flows, AIAA Paper 92-0439, 1992, 21 pp.
[20] Savelev A. D., “Raschety techenii vyazkogo gaza na osnove $(q-v)$-modeli turbulentnosti”, Zh. vychisl. matem. i matem. fiz., 43:4 (2003), 589–600
[21] Marsden O., Bogey C., Bailly C., “High-order curvilinear simulations of flows around non-cartesiar bodies”, J. Comput. Acoustics, 13:4 (2005), 731–748 | DOI
[22] Shen W. Z., Michelsen J. A., Sorensen J. N., “A collocated grid finite volume method for aeroacoustic computations of low-speed flows”, J. Comput. Phys., 196 (2004), 348–366 | DOI
[23] Tam C. K. W., Ju H., Numerical simulation of the generation of airfoil tones at a moderate Reynolds number, AIAA Paper 2006-2502, 23 pp.
[24] Michel U., Eschricht D., Grechner B. et al., “Simulation of the sound radiation of turbulent flows with DES”, Weat-East high speed flow field conference (19–22 November 2007, Moscow, Russia), 29 pp.