Multioperator representation of composite compact schemes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 10, pp. 1580-1593 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The multioperator approach is used to obtain high-order accurate compact differences. These differences are developed to describe convective terms of differential equations, as well as mixed derivatives, source terms, and the coefficients of metric derivatives of coordinate transformations. The same principles are used to obtain high-order compact differences for representing diffusion terms. These differences underlie multioperator composite compact schemes, which are used to compute the flow past an airfoil by integrating the nonstationary Navier–Stokes equations supplemented with the equations of a turbulent viscosity model.
@article{ZVMMF_2014_54_10_a4,
     author = {A. D. Savel'ev},
     title = {Multioperator representation of composite compact schemes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1580--1593},
     year = {2014},
     volume = {54},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a4/}
}
TY  - JOUR
AU  - A. D. Savel'ev
TI  - Multioperator representation of composite compact schemes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1580
EP  - 1593
VL  - 54
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a4/
LA  - ru
ID  - ZVMMF_2014_54_10_a4
ER  - 
%0 Journal Article
%A A. D. Savel'ev
%T Multioperator representation of composite compact schemes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1580-1593
%V 54
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a4/
%G ru
%F ZVMMF_2014_54_10_a4
A. D. Savel'ev. Multioperator representation of composite compact schemes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 10, pp. 1580-1593. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a4/

[1] Tolstykh A. I., “O metode chislennogo resheniya uravnenii Nave–Stoksa szhimaemogo gaza v shirokom diapazone chisel Reinoldsa”, Dokl. AN SSSR, 210:1 (1973), 48–51

[2] Tolstykh A., High accuracy non-centered compact schemes for fluid dynamics applications, World Sci., Singapore, 1994

[3] Lele S. K., “Impact finite difference schemes with spectral-like resolution”, J. Comput. Phys., 102 (1992), 16–42 | DOI

[4] Lele S., Lele S. K., Moin P., “Direct numerical simulation of isotropic turbulence interacting with a shock wave”, J. Fluid Mech., 251 (1993), 533–562 | DOI

[5] Visbal M. R., Gaitonde D. V., “On the use of high-order finite-difference schemes on curvilinear and deforming meshes”, J. Comput. Phys., 181 (2002), 155–185 | DOI

[6] Yee H. C., Sandham N. D., Djomehri M. J., “Low-dissipative high-order shock-capturing methods using characteristic-based filters”, J. Comput. Phys., 150 (1999), 199–238 | DOI

[7] Tolstykh A. I., “Multioperatornye skhemy proizvolnogo poryadka, ispolzuyuschie netsentrirovannye kompaktnye approksimatsii”, Dokl. RAN, 366:3 (1999), 319–322

[8] Tolstykh A. I., “O postroenii skhem zadannogo poryadka s lineinymi kombinatsiyami operatorov”, Zh. vychisl. matem. i matem. fiz., 40:8 (2000), 1206–1220

[9] Lipavskii M. V., Tolstykh A. I., Chigerev E. N., “O chislennom modelirovanii neustoichivosti sdvigovykh sloev na osnove skhemy s multioperatornymi approksimatsiyami devyatogo poryadka”, Zh. vychisl. matem. i matem. fiz., 53:3 (2013), 417–432 | DOI

[10] Pulliam T. H., “Artificial dissipation models for the Euler equations”, AIAA J., 24:12 (1986), 1931–1940 | DOI

[11] Savelev A. D., “Sostavnye kompaktnye skhemy vysokogo poryadka dlya modelirovaniya techenii vyazkogo gaza”, Zh. vychisl. matem. i matem. fiz., 47:8 (2007), 1389–1403

[12] Savelev A. D., “Primenenie raznostnykh operatorov vysokogo poryadka pri chislennom modelirovanii zadach aerodinamiki”, Matem. modelirovanie, 24:4 (2012), 80–94

[13] Savelev A. D., “O strukture vnutrennei dissipatsii sostavnykh kompaktnykh skhem dlya resheniya zadach vychislitelnoi gazovoi dinamiki”, Zh. vychisl. matem. i matem. fiz., 49:12 (2009), 2232–2246

[14] Tolstykh A. I., “O multioperatornom metode postroeniya approksimatsii i skhem proizvolno vysokogo poryadka”, Zh. vychisl. matem. i matem. fiz., 51:1 (2011), 56–73

[15] Tolstykh A. I., “Development of arbitrary-order multioperators-based schemes for parallel calculations. 1: Higher-than-fifth-order approximations to convection terms”, J. Comput. Phys., 225 (2007), 2333–2353 | DOI

[16] Zaitsev A. V., Kudashov V. N., “Tochnye resheniya uravneniya dinamiki vyazkoi sredy v kanale”, Kholodilnaya tekhn. i konditsionirovanie, 2012, no. 2, 11–14

[17] Wilcox D. C., “Reassessment of the scale-determing equation for advanced turbulence models”, AIAA J., 22:8 (1984), 1139–1145 | DOI

[18] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1987

[19] Spalart P. R., Allmaras S. R., A one-equation turbulence model for aerodynamic flows, AIAA Paper 92-0439, 1992, 21 pp.

[20] Savelev A. D., “Raschety techenii vyazkogo gaza na osnove $(q-v)$-modeli turbulentnosti”, Zh. vychisl. matem. i matem. fiz., 43:4 (2003), 589–600

[21] Marsden O., Bogey C., Bailly C., “High-order curvilinear simulations of flows around non-cartesiar bodies”, J. Comput. Acoustics, 13:4 (2005), 731–748 | DOI

[22] Shen W. Z., Michelsen J. A., Sorensen J. N., “A collocated grid finite volume method for aeroacoustic computations of low-speed flows”, J. Comput. Phys., 196 (2004), 348–366 | DOI

[23] Tam C. K. W., Ju H., Numerical simulation of the generation of airfoil tones at a moderate Reynolds number, AIAA Paper 2006-2502, 23 pp.

[24] Michel U., Eschricht D., Grechner B. et al., “Simulation of the sound radiation of turbulent flows with DES”, Weat-East high speed flow field conference (19–22 November 2007, Moscow, Russia), 29 pp.