Optimal observation of controlled elastic vibrations of a beam in the presence of measurement errors
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 10, pp. 1563-1570 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of constructing of an optimal operation for restoring the state of controlled elastic vibrations of a beam in the presence of measurement errors is investigated. By the method of separation of variables, the problem is reduced to an observation problem with an actual output signal for an infinite system of ordinary differential equations. For each harmonic, a universal optimal operation that restores the deflection of the beam from equilibrium and the velocities of all points of the beam is constructed by amplifying the ideal part of the signal produced by the system.
@article{ZVMMF_2014_54_10_a2,
     author = {V. R. Barseghyan},
     title = {Optimal observation of controlled elastic vibrations of a beam in the presence of measurement errors},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1563--1570},
     year = {2014},
     volume = {54},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a2/}
}
TY  - JOUR
AU  - V. R. Barseghyan
TI  - Optimal observation of controlled elastic vibrations of a beam in the presence of measurement errors
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1563
EP  - 1570
VL  - 54
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a2/
LA  - ru
ID  - ZVMMF_2014_54_10_a2
ER  - 
%0 Journal Article
%A V. R. Barseghyan
%T Optimal observation of controlled elastic vibrations of a beam in the presence of measurement errors
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1563-1570
%V 54
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a2/
%G ru
%F ZVMMF_2014_54_10_a2
V. R. Barseghyan. Optimal observation of controlled elastic vibrations of a beam in the presence of measurement errors. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 10, pp. 1563-1570. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a2/

[1] Korotkii A. I., “Obratnye zadachi dinamiki upravlyaemykh sistem s raspredelennymi parametrami”, Izv. VUZov. Matem., 1995, no. 11, 101–124

[2] Degtyarev G. L., Sirazetdinov T. K., “Sintez optimalnogo upravleniya v sistemakh s raspredelennymi parametrami pri nepolnom izmerenii sostoyaniya (obzor)”, Izv. AN SSSR. Kibernetika, 1983, no. 2, 123–136

[3] Barseghyan V. R., “String vibration observation problem”, 1 st Int. conf. Control of Oscillations and Chaos (St. Petersburg, 1997), v. 2, 309–310

[4] Barsegyan V. P., Airapetyan V. V., “K zadache nablyudeniya upravlyaemykh kolebatelnykh dvizhenii membrany”, Uch. zapiski EGU, 1997, no. 2(187), 21–26

[5] Barsegyan V. R., “Zadacha optimalnogo vosstanovleniya sostoyaniya sistem s raspredelennymi parametrami pri nalichii pogreshnostei v nepolnykh izmereniyakh”, Izv. NAN RA. Mekhan., 57:1 (2004), 70–75

[6] Barsegyan V. R., “Zadacha optimalnogo vosstanovleniya sostoyaniya sistemy, opisyvaemoi integro-differentsialnym uravneniem pri nalichii pogreshnostei v izmereniyakh”, Avtomatika i telemekhan., 2012, no. 8, 111–118

[7] Znamenskaya L. N., “Nablyudaemost uprugikh kolebanii sistem s raspredelennymi i sosredotochennymi parametrami po dvum granitsam”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 944–958

[8] Egorov A. I., “O nablyudaemosti uprugikh kolebanii balki”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 967–973

[9] Filippov A. P., Kolebaniya deformiruemykh sistem, Mashinostroenie, M., 1970

[10] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968

[11] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977

[12] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1978