Two difference schemes for the numerical solution of Maxwell’s equations as applied to extremely and super low frequency signal propagation in the Earth-ionosphere waveguide
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 10, pp. 1656-1677 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two explicit two-time-level difference schemes for the numerical solution of Maxwell’s equations are proposed to simulate propagation of small-amplitude extremely and super low frequency electromagnetic signals (200 Hz and lower) in the Earth-ionosphere waveguide with allowance for the tensor conductivity of the ionosphere. Both schemes rely on a new approach to time approximation, specifically, on Maxwell’s equations represented in integral form with respect to time. The spatial derivatives in both schemes are approximated to fourth-order accuracy. The first scheme uses field equations and is second-order accurate in time. The second scheme uses potential equations and is fourth-order accurate in time. Comparative test computations show that the schemes have a number of important advantages over those based on finite-difference approximations of time derivatives. Additionally, the potential scheme is shown to possess better properties than the field scheme.
@article{ZVMMF_2014_54_10_a10,
     author = {O. I. Akhmetov and V. S. Mingalev and I. V. Mingalev and O. V. Mingalev and Yu. V. Fedorenko},
     title = {Two difference schemes for the numerical solution of {Maxwell{\textquoteright}s} equations as applied to extremely and super low frequency signal propagation in the {Earth-ionosphere} waveguide},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1656--1677},
     year = {2014},
     volume = {54},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a10/}
}
TY  - JOUR
AU  - O. I. Akhmetov
AU  - V. S. Mingalev
AU  - I. V. Mingalev
AU  - O. V. Mingalev
AU  - Yu. V. Fedorenko
TI  - Two difference schemes for the numerical solution of Maxwell’s equations as applied to extremely and super low frequency signal propagation in the Earth-ionosphere waveguide
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1656
EP  - 1677
VL  - 54
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a10/
LA  - ru
ID  - ZVMMF_2014_54_10_a10
ER  - 
%0 Journal Article
%A O. I. Akhmetov
%A V. S. Mingalev
%A I. V. Mingalev
%A O. V. Mingalev
%A Yu. V. Fedorenko
%T Two difference schemes for the numerical solution of Maxwell’s equations as applied to extremely and super low frequency signal propagation in the Earth-ionosphere waveguide
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1656-1677
%V 54
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a10/
%G ru
%F ZVMMF_2014_54_10_a10
O. I. Akhmetov; V. S. Mingalev; I. V. Mingalev; O. V. Mingalev; Yu. V. Fedorenko. Two difference schemes for the numerical solution of Maxwell’s equations as applied to extremely and super low frequency signal propagation in the Earth-ionosphere waveguide. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 10, pp. 1656-1677. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a10/

[1] Kane Yee, “Numerical solution of initial boundary value problems involving Maxwell"s equations in isotropic media”, IEEE Trans. on Antennas and Propagation, 14 (1966), 302–307 | DOI

[2] Simpson J. J., “Current and future applications of 3-D global Earth-ionospheric models based on the full-vector Maxwell's equations FDTD method”, Surveys Geophys., 30 (2009), 105–130 | DOI

[3] Simpson J. J., Taflove A., “A review of progress in FDTD Maxwell's equations modeling of impulsive subionospheric propagation below 300 kHz”, IEEE Trans. on Antennas and Propagation, 55:6 (2007), 1582–1590 | DOI

[4] Paul D. L., Railton S. J., “Spherical ADI FDTD method with application to propagation in the Earth ionosphere cavity”, IEEE Trans. on Antennas and Propagation, 60:1 (2012), 310–317 | DOI

[5] Yu Y., Simpson J. J., “An collocated 3-D FDTD model of electromagnetic wave propogation in magnetized cold plasma”, IEEE Trans. on Antennas and Propagation, 58:2 (2010), 469–478 | DOI

[6] Semenov A. N., Smirnov A. P., “Chislennoe modelirovanie uravnenii Maksvella s dispersnymi materialami”, Matem. modelirovanie, 25:12 (2013), 19–32

[7] Silin V. P., Vvedenie v kineticheskuyu teoriyu gazov, Nauka, M., 1971

[8] Cherchinyani K., Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978

[9] Arsenev A. A., Lektsii o kineticheskikh uravneniyakh, Nauka, M., 1992

[10] Akasofu S.-I., Chepmen S., Solnechno-zemnaya fizika, Mir, M., 1974

[11] Khargrivs Dzh. K., Verkhnyaya atmosfera i solnechno-zemnye svyazi, Gidrometeoizdat, L., 1982

[12] Denisenko V. V., Biernat N. K., Mezentsev A. V., Shaidurov V. A., Zamay S. S., “Modification of conductivity due to acceleration of the ionospheric medium”, Annales Geophysicae, 26 (2008), 2111–2130 | DOI

[13] Denisenko V. V., Pomozov E. V., “Proniknovenie elektricheskogo polya iz prizemnogo sloya atmosfery v ionosferu”, Solnechno-zemnaya fizika, 2010, no. 16, 70–75

[14] Kalitkin H. H., Chislennye metody, Nauka, M., 1978