@article{ZVMMF_2014_54_10_a10,
author = {O. I. Akhmetov and V. S. Mingalev and I. V. Mingalev and O. V. Mingalev and Yu. V. Fedorenko},
title = {Two difference schemes for the numerical solution of {Maxwell{\textquoteright}s} equations as applied to extremely and super low frequency signal propagation in the {Earth-ionosphere} waveguide},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1656--1677},
year = {2014},
volume = {54},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a10/}
}
TY - JOUR AU - O. I. Akhmetov AU - V. S. Mingalev AU - I. V. Mingalev AU - O. V. Mingalev AU - Yu. V. Fedorenko TI - Two difference schemes for the numerical solution of Maxwell’s equations as applied to extremely and super low frequency signal propagation in the Earth-ionosphere waveguide JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 1656 EP - 1677 VL - 54 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a10/ LA - ru ID - ZVMMF_2014_54_10_a10 ER -
%0 Journal Article %A O. I. Akhmetov %A V. S. Mingalev %A I. V. Mingalev %A O. V. Mingalev %A Yu. V. Fedorenko %T Two difference schemes for the numerical solution of Maxwell’s equations as applied to extremely and super low frequency signal propagation in the Earth-ionosphere waveguide %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 1656-1677 %V 54 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a10/ %G ru %F ZVMMF_2014_54_10_a10
O. I. Akhmetov; V. S. Mingalev; I. V. Mingalev; O. V. Mingalev; Yu. V. Fedorenko. Two difference schemes for the numerical solution of Maxwell’s equations as applied to extremely and super low frequency signal propagation in the Earth-ionosphere waveguide. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 10, pp. 1656-1677. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a10/
[1] Kane Yee, “Numerical solution of initial boundary value problems involving Maxwell"s equations in isotropic media”, IEEE Trans. on Antennas and Propagation, 14 (1966), 302–307 | DOI
[2] Simpson J. J., “Current and future applications of 3-D global Earth-ionospheric models based on the full-vector Maxwell's equations FDTD method”, Surveys Geophys., 30 (2009), 105–130 | DOI
[3] Simpson J. J., Taflove A., “A review of progress in FDTD Maxwell's equations modeling of impulsive subionospheric propagation below 300 kHz”, IEEE Trans. on Antennas and Propagation, 55:6 (2007), 1582–1590 | DOI
[4] Paul D. L., Railton S. J., “Spherical ADI FDTD method with application to propagation in the Earth ionosphere cavity”, IEEE Trans. on Antennas and Propagation, 60:1 (2012), 310–317 | DOI
[5] Yu Y., Simpson J. J., “An collocated 3-D FDTD model of electromagnetic wave propogation in magnetized cold plasma”, IEEE Trans. on Antennas and Propagation, 58:2 (2010), 469–478 | DOI
[6] Semenov A. N., Smirnov A. P., “Chislennoe modelirovanie uravnenii Maksvella s dispersnymi materialami”, Matem. modelirovanie, 25:12 (2013), 19–32
[7] Silin V. P., Vvedenie v kineticheskuyu teoriyu gazov, Nauka, M., 1971
[8] Cherchinyani K., Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978
[9] Arsenev A. A., Lektsii o kineticheskikh uravneniyakh, Nauka, M., 1992
[10] Akasofu S.-I., Chepmen S., Solnechno-zemnaya fizika, Mir, M., 1974
[11] Khargrivs Dzh. K., Verkhnyaya atmosfera i solnechno-zemnye svyazi, Gidrometeoizdat, L., 1982
[12] Denisenko V. V., Biernat N. K., Mezentsev A. V., Shaidurov V. A., Zamay S. S., “Modification of conductivity due to acceleration of the ionospheric medium”, Annales Geophysicae, 26 (2008), 2111–2130 | DOI
[13] Denisenko V. V., Pomozov E. V., “Proniknovenie elektricheskogo polya iz prizemnogo sloya atmosfery v ionosferu”, Solnechno-zemnaya fizika, 2010, no. 16, 70–75
[14] Kalitkin H. H., Chislennye metody, Nauka, M., 1978