Modification of the Euler quadrature formula for functions with a boundary-layer component
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 10, pp. 1547-1556 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Euler quadrature formula for the numerical integration of functions with a boundary-layer component on a uniform grid is investigated. If the function under study has a rapidly growing component, the error can be significant. A uniformly accurate quadrature formula is constructed by modifying the Hermite interpolation formula so that the resulting one is exact for the boundary-layer component. An analogue of the Euler formula that is exact for the boundary-layer component is constructed. It is proved that the resulting composite quadrature formula is third-order accurate in space uniformly with respect to the boundary-layer component and its derivatives.
@article{ZVMMF_2014_54_10_a0,
     author = {A. I. Zadorin},
     title = {Modification of the {Euler} quadrature formula for functions with a boundary-layer component},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1547--1556},
     year = {2014},
     volume = {54},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a0/}
}
TY  - JOUR
AU  - A. I. Zadorin
TI  - Modification of the Euler quadrature formula for functions with a boundary-layer component
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1547
EP  - 1556
VL  - 54
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a0/
LA  - ru
ID  - ZVMMF_2014_54_10_a0
ER  - 
%0 Journal Article
%A A. I. Zadorin
%T Modification of the Euler quadrature formula for functions with a boundary-layer component
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1547-1556
%V 54
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a0/
%G ru
%F ZVMMF_2014_54_10_a0
A. I. Zadorin. Modification of the Euler quadrature formula for functions with a boundary-layer component. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 10, pp. 1547-1556. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_10_a0/

[1] Berezin I. S., Zhidkov N. P., Metody vychislenii, Nauka, M., 1966

[2] Bakhvalov N. S., Chislennye metody, Nauka, M., 1975

[3] Nikolskii S. M., Kvadraturnye formuly, Nauka, M., 1972

[4] Zadorin A. I., Zadorin N. A., “Kvadraturnaya formula Eilera dlya funktsii s pogransloinoi sostavlyayuschei na kusochno-ravnomernoi setke”, Sibirsk. elektronnye matem. izv., 10 (2013), 491–503

[5] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[6] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems: error estimates in the Maximum norm for linear problems in one and two Dimensions, World Scientific Publishing, Singapore, 2012

[7] Zadorin A. I., Zadorin N. A., “Kvadraturnye formuly dlya funktsii s pogransloinoi sostavlyayuschei”, Zh. vychisl. matem. i matem. fiz., 51:11 (2011), 1952–1962

[8] Zadorin A. I., Zadorin N. A., “Splain-interpolyatsiya na ravnomernoi setke funktsii s pogransloinoi sostavlyayuschei”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 221–233

[9] Zadorin A. I., Zadorin N. A., “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation”, Sibirsk. elektronnye matem. izv., 9 (2012), 445–455

[10] Zadorin A. I., Zadorin N. A., “Analog formuly Nyutona–Kotesa s chetyrmya uzlami dlya funktsii s pogransloinoi sostavlyayuschei”, Sibirsk. zh. vychisl. matem., 16:4 (2013), 313–323

[11] Zadorin A., Zadorin N., “Quadrature formula with five nodes for functions with a boundary layer component”, Lect. Notes in Comput. Sci., 8236, Springer, Berlin, 2013, 540–546 | DOI

[12] V. P. Ilin, Chislennyi analiz, IVM i MG SO RAN, Novosibirsk, 2004