On the exact solitary wave solutions of a special class of Benjamin–Bona–Mahony equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 9 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The general form of Benjamin-Bona-Mahony equation (BBM) is $ u_t+au_x+bu_{xxt}+(g(u))_x=0,\quad a,b\in\mathbb{R}$, where $ab\ne0$ and $g(u)$ is a $C^2$-smooth nonlinear function, has been proposed by Benjamin et al. In [1] and describes approximately the unidirectional propagation of long wave in certain nonlinear dispersive systems. In this payer, we consider a new class of Benjamin–Bona–Mahony equation (BBM) $u_t+au_x+bu_{xxt}+(pe^u+qe^{-u})_x=0$, $a, b, p, q \in\mathbb{R}$, where $ab\ne0$, and $qp\ne0$, and we obtain new exact solutions for it by using the well-known $(G'/G)$-expansion method. New periodic and solitary wave solutions for these nonlinear equation are formally derived.
@article{ZVMMF_2013_53_9_a9,
     author = {Reza Abazari},
     title = {On the exact solitary wave solutions of a special class of {Benjamin{\textendash}Bona{\textendash}Mahony} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1554},
     year = {2013},
     volume = {53},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a9/}
}
TY  - JOUR
AU  - Reza Abazari
TI  - On the exact solitary wave solutions of a special class of Benjamin–Bona–Mahony equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1554
VL  - 53
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a9/
LA  - en
ID  - ZVMMF_2013_53_9_a9
ER  - 
%0 Journal Article
%A Reza Abazari
%T On the exact solitary wave solutions of a special class of Benjamin–Bona–Mahony equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1554
%V 53
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a9/
%G en
%F ZVMMF_2013_53_9_a9
Reza Abazari. On the exact solitary wave solutions of a special class of Benjamin–Bona–Mahony equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 9. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a9/

[1] T. B. Benjamin, J. L. Bona, J. J. Mahony, “Model equations for long waves in nonlinear dispersive systems”, Phil. Trans. R. Soc. London, 272 (1972), 47–48 | DOI | MR

[2] J. Scott Russell, “Report on waves”, Fourteenth Meeting of the British Association for the Advancement of Science (1844)

[3] M. J. Ablowtiz, J. F. Ladik, “On the solution of a class of nonlinear partial difference equations”, Stud. Appl. Math., 57 (1977), 1–12 | MR

[4] M. Wadati, “Transformation theories for nonlinear discrete systems”, Prog. Theor. Phys. Suppl., 59 (1976), 36–63 | DOI

[5] H. W. Tam, X. B. Hu, “Soliton solutions and Bácklund transformation for the Kupershmidt five-field lattice: A bilinear approach”, Appl. Math. Lett., 15 (2002), 987–993 | DOI | MR | Zbl

[6] Hua Wu, Da-Jun Zhang, “Mixed rational soliton solutions of two differential-difference equations in Casorati determinant form”, J. Math. Phys. A: Gen. Math., 36 (2003), 4867–4873 | DOI | MR | Zbl

[7] A. M. Wazwaz, “The tanh method for travelling wave solutions to the Zhiber Shabat equation and other related equations”, Comm. Nonlin. Sci. Numer. Simul., 13 (2008), 584–592 | DOI | MR | Zbl

[8] E. G. Fan, H. Q. Zhang, “A note on the homogeneous balance method”, Phys. Lett. A, 246 (1998), 403–406 | DOI | Zbl

[9] Z. Yan, “Abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional integrable Davey–Stewartson-type equation via a new method”, Chaos. Soliton. Fract., 18 (2003), 299–309 | DOI | MR | Zbl

[10] H. Hirota, A. Ramani, “The Miura transformations of Kaups equation and of Mikhailovs equation”, Phys. Lett. A, 76 (1980), 95–96 | DOI | MR

[11] C. T. Yan, “A simple transformation for nonlinear waves”, Phys. Lett. A, 224 (1996), 77–84 | DOI | MR | Zbl

[12] J. H. He, X. H. Wu, “Exp-function method for nonlinear wave equations”, Chaos Solitons Fractals, 30 (2006), 700–708 | DOI | MR | Zbl

[13] M. V. Demina, N. A. Kudryashov, D. I. Sinelshchikov, “The polygonal method for constructing exact solutions to certain nonlinear differential equations describing water waves”, Comput. Math. Math. Phys., 48 (2008), 2182–2193 | DOI | MR

[14] N. A. Kudryashov, “Simplest equation method to look for exact solutions of nonlinear differential equations”, Chaos Solitons Fractals, 24 (2005), 1217–1231 | DOI | MR | Zbl

[15] N. A. Kudryashov, M. V. Demina, “Traveling wave solutions of the generalized nonlinear evolution equations”, J. Appl. Math. Comput., 210 (2009), 551–557 | DOI | MR | Zbl

[16] N. K. Vitanov, “Modified method of simplest equation: Powerful tool for obtaining exact and approximate traveling-wave solutions of nonlinear PDEs”, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1176–1185 | DOI | MR | Zbl

[17] M. Wang, X. Li, J. Zhang, “The $\left(\frac{G'}{G}\right)$-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics”, Phys. Lett. A, 372 (2008), 417–423 | DOI | MR | Zbl

[18] Reza Abazari, “The $\left(\frac{G'}{G}\right)$-expansion method for the coupled Boussinesq equation”, Proc. Eng., 10 (2011), 2845–2850 | DOI

[19] Reza Abazari, “The solitary wave solutions of Zoomeron equation”, Appl. Math. Sci., 5(59) (2011), 2943–2949 | MR | Zbl

[20] Reza Abazari, “Application of $\left(\frac{G'}{G}\right)$-expansion method to travelling wave solutions of three nonlinear evolution equation”, Comput. Fluids, 39 (2010), 1957–1963 | DOI | MR | Zbl

[21] Reza Abazari, “The $\left(\frac{G'}{G}\right)$-expansion method for Tzitzéica type nonlinear evolution equations”, Math. Comput. Model., 52 (2010), 1834–1845 | DOI | MR | Zbl

[22] Reza Abazari, Rasoul Abazari, “Hyperbolic, trigonometric and rational function solutions of Hirota–Ramani equation via $\left(\frac{G'}{G}\right)$-expansion method”, Math. Prob. Eng., 2011, 424801, 11 pp. | DOI | MR | Zbl

[23] Reza Abazari, “Solitary-wave solutions of Klein–Gordon equation with quintic nonlinearity”, J. Appl. Mech. Tech. Phys., 54:3 (2013), 397–403 | DOI

[24] K. Al-Khaled, “Approximate wave solutions for generalized Benjamin–Bona–Mahony–Burgers equations”, Appl. Math. Comput., 171:1 (2005), 281–292 | DOI | MR | Zbl

[25] A. M. Wazwaz, “New travelling wave solutions of different physical structures to generalized BBM equation”, Phys. Lett. A, 355 (2006), 358–362 | DOI

[26] A. Biswas, S. Konar, “Soliton perturbation theory for the generalized Benjamin–Bona–Mahoney equation”, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 703–706 | DOI | MR | Zbl

[27] Z. Z. Ganji, D. D. Ganji, H. Bararnia, “Approximate general and explicit solutions of nonlinear BBMB equations by exp-function method”, Appl. Math. Model., 33 (2009), 1836–1841 | DOI | MR | Zbl