Method of equivalent differences for the neutron transport equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 9, pp. 1517-1530 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For boundary value problems in neutron transport theory, numerical methods are described that are based on the reduction of these problems to systems of nonlinear algebraic equations. Techniques based on the theory of nonlinear positive operators in partially ordered spaces are used to establish major results concerning the existence and uniqueness of solutions and solution-finding methods.
@article{ZVMMF_2013_53_9_a7,
     author = {B. D. Abramov},
     title = {Method of equivalent differences for the neutron transport equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1517--1530},
     year = {2013},
     volume = {53},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a7/}
}
TY  - JOUR
AU  - B. D. Abramov
TI  - Method of equivalent differences for the neutron transport equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1517
EP  - 1530
VL  - 53
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a7/
LA  - ru
ID  - ZVMMF_2013_53_9_a7
ER  - 
%0 Journal Article
%A B. D. Abramov
%T Method of equivalent differences for the neutron transport equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1517-1530
%V 53
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a7/
%G ru
%F ZVMMF_2013_53_9_a7
B. D. Abramov. Method of equivalent differences for the neutron transport equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 9, pp. 1517-1530. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a7/

[1] Marchuk G. I., Lebedev V. I., Chislennye metody v teorii perenosa neitronov, Atomizdat, M., 1971 | MR | Zbl

[2] Bell D., Glesston S., Teoriya yadernykh reaktorov, Atomizdat, M., 1974

[3] Vladimirov V. S., Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits, Tr. Matem. in-ta AN SSSR, 61, M., 1961

[4] Shikhov S. B., Voprosy matematicheskoi teorii reaktorov, Atomizdat, M., 1973

[5] Abramov B. D., Shikhov S. B., “Metody rasschepleniya po podoblastyam dlya uravneniya perenosa neitronov”, Zh. vychisl. matem. i matem. fiz., 30:11 (1990), 1702–1718 | MR

[6] Abramov B. D., “O nekotorykh modelyakh mnogogruppovogo priblizheniya v teorii yadernykh reaktorov”, Zh. vychisl. matem. i matem. fiz., 34:2 (1994), 214–233 | MR | Zbl

[7] Abramov B. D., “O nekotorykh modifikatsiyakh mnogogruppovogo metoda Marchuka dlya resheniya neodnorodnykh kraevykh zadach teorii perenosa neitronov”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1739–1752 | MR | Zbl

[8] Abramov B. D., Kvazigruppovoi podkhod k resheniyu sistem lineinykh algebraicheskikh uravnenii, Preprint FEI-1787, Obninsk, 1986

[9] Abramov B. D., “O nekotorykh mnogogruppovykh metodakh povyshennoi konservativnosti”, VANT. Ser. Yadernye konstanty, 2003, no. 1–2, 18–33

[10] Nikolaev M. N., Ryazanov B. G., Savoskin M. M., Tsibulya A. M., Mnogogruppovoe priblizhenie v teorii perenosa neitronov, Energoatomizdat, M., 1984

[11] Abramov B. D., Voprosy razvitiya i obosnovaniya metoda granichnykh integralnykh uravnenii v teorii perenosa neitronov, Preprint FEI-3181, 2010

[12] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975 | MR

[13] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1986 | MR

[14] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962 | MR

[15] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[16] Krasnoselskii M. A., Lifshits E. A., Sobolev A. V., Pozitivnye lineinye sistemy, Nauka, M., 1985 | MR