@article{ZVMMF_2013_53_9_a5,
author = {A. I. Tolstykh},
title = {Hybrid schemes with high-order multioperators for computing discontinuous solutions},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1481--1502},
year = {2013},
volume = {53},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a5/}
}
TY - JOUR AU - A. I. Tolstykh TI - Hybrid schemes with high-order multioperators for computing discontinuous solutions JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1481 EP - 1502 VL - 53 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a5/ LA - ru ID - ZVMMF_2013_53_9_a5 ER -
A. I. Tolstykh. Hybrid schemes with high-order multioperators for computing discontinuous solutions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 9, pp. 1481-1502. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a5/
[1] Tolstykh A. I., “Multioperatornye skhemy proizvolnogo poryadka, ispolzuyuschie netsentrirovannye kompaktnye approksimatsii”, Dokl. AN, 366:3 (1999), 319–322 | MR | Zbl
[2] Tolstykh A. I., “O postroenii skhem zadannogo poryadka s lineinymi kombinatsiyami operatorov”, Zh. vychisl. matem. i matem. fiz., 40:8 (2000), 1206–1220 | MR | Zbl
[3] Woodward P., Colella P., “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comput. Phys., 54 (1984), 115–173 | DOI | MR | Zbl
[4] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR
[5] Fedorenko R. P., “Primenenie raznostnykh skhem vysokoi tochnosti dlya chislennogo resheniya giperbolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 2:6 (1962), 1122–1128 | MR | Zbl
[6] Petrov I. B., Kholodov A. S., “O regulyarizatsii razryvnykh chislennykh reshenii uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 24:8 (1984), 1172–1188 | MR | Zbl
[7] Kholodov A. C., Kholodov Ya. A., “O kriteriyakh monotonnosti raznostnykh skhem dlya uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1638–1667 | MR
[8] Kholodov A. S., “Chislennye metody resheniya giperbolicheskikh uravnenii i sistem”, Entsiklopediya nizkotemperaturnoi plazmy, v. VII-1, Ch. 2, Yanus-K, M., 2008, 141–174
[9] Mikhailovskaya M. N., Rogov B. V., “Monotonnye kompaktnye skhemy beguschego scheta dlya sistem giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 52:4 (2012), 672–695 | MR
[10] Zalesac S. T., “Fully multidimensionalflux-corrected transport algorithms for fluids”, J. Comput. Phys., 31 (1979), 335–362 | DOI | MR
[11] Boris J. P., Book D. L., “Flux-corrected transport. I: SHASTA, a fluid transport algorithm that works”, J. Comput. Phys., 11 (1973), 38–69 | DOI | Zbl
[12] Tolstykh A. I., “Development of arbitrary-order multioperators-based schemes for parallel calculations. 1: High-er-than-fifth order approximations to convection terms”, J. Comput. Phys., 225 (2007), 2333–2353 | DOI | MR | Zbl
[13] Lipavskii M. V., Tolstykh A. I., Chigerëv E. N., “O skheme s multioperatornymi approksimatsiyami 9-go poryadka dlya parallelnykh vychislenii i o ee primenenii v zadachakh pryamogo chislennogo modelirovaniya”, Zh. vychisl. matem. i matem. fiz., 46:8 (2006), 1433–1452 | MR
[14] Savelev A. D., Tolstykh A. I., Shirobokov D. A., “O primenenii kompaktnykh i multioperatornykh skhem dlya chislennogo modelirovaniya akusticheskikh polei, vozbuzhdaemykh volnami neustoichivosti v sverkhzvukovykh struyakh”, Zh. vychisl. matem. i matem. fiz., 49:7 (2009), 1280–1294 | MR
[15] Tolstykh A. I., “O multioperatornom metode postroeniya approksimatsii i skhem proizvolno vysokogo poryadka”, Zh. vychisl. matem. i matem. fiz., 51:1 (2011), 56–73 | MR | Zbl
[16] Lax P. D., “Week solutions of nonlinear hyperbolic equations and their numerical cpmputations”, Commun. Pure and Appl. Math., 7:1 (1954), 159–193 | DOI | MR | Zbl
[17] Lax P. D., Wendroff B., “Systems of conservation laws”, Commun. Pure and Appl. Math., 13:2 (1960), 217–237 | DOI | MR | Zbl
[18] Ostapenko V. V., “O povyshenii poryadka slaboi approksimatsii zakonov sokhraneniya na razryvnykh resheniyakh”, Zh. vychisl. matem. i matem. fiz., 36:10 (1996), 146–157 | MR | Zbl
[19] Lipavskii M. V., Chigerëv E. N., Chislennoe issledovanie vikhrevykh dvizhenii zhidkostei s pomoschyu netsentrirovannykh kompaktnykh approksimatsii, VTs RAN, M., 2004
[20] Adams N. A., Sharif K., “A high-resolution compact-ENO scheme for shock-turbulence interaction problems”, Comput. Phys., 127 (1996), 27–51 | DOI | MR | Zbl
[21] Sod G. A., “A survey of several finite difference schemes for hyperbolic conservation laws”, J. Comput. Phys., 27 (1978), 1–31 | DOI | MR | Zbl
[22] Woodward P., Colella P., “The piecewise parabolic method (PPM) for gas-dynamical”, J. Comput. Phys., 54 (1984), 174–201 | DOI | MR | Zbl
[23] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl
[24] Liska R., Wendroff B., “Comparison of several difference schemes on 1D and 2D test problems for the Euker equations”, SIAM J. Sci. Comput., 26:3 (2003), 995–1017 | DOI | MR
[25] Elizarova T. G., Shilnikov E. V., “Popravka”, Zh. vychisl. matem. i matem. fiz., 50:4 (2010), 784 | MR
[26] Liu X.-D., Osher S., Chan T., “Weighted essentially non-oscillatory schemes”, J. Comput. Phys., 115 (1994), 200–212 | DOI | MR | Zbl
[27] Lipavskii M. V., Savelev A. D., Tolstykh A. I., Shirobokov D. A., “Multioperatornye skhemy do 18-go poryadka tochnosti s prilozheniyami k zadacham neustoichivosti i akustiki strui”, Uch. zapiski TsAGI, XLIII:3 (2012), 16–33
[28] Tolstykh A. I., Shirobokov D. A., “Fast calculations of screech using highly accurate multioperators-based schemes”, J. appl. acoustics, 74 (2013), 102–109 | DOI