Efficient Jacobi–Gauss collocation method for solving initial value problems of Bratu-type
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 9 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we propose the shifted Jacobi–Gauss collocation spectral method for solving initial value problems of Bratu type, which is widely applicable in fuel ignition of the combustion theory and heat transfer. The spatial approximation is based on shifted Jacobi polynomials $J_n^{(\alpha,\beta)}(x)$ with $\alpha, \beta \in(-1,\infty)$, $x\in[0,1]$ and $n$ the polynomial degree. The shifted Jacobi–Gauss points are used as collocation nodes. Illustrative examples have been discussed to demonstrate the validity and applicability of the proposed technique. Comparing the numerical results of the proposed method with some well-known results show that the method is efficient and gives excellent numerical results.
@article{ZVMMF_2013_53_9_a4,
     author = {E. H. Doha and A. H. Bhrawy and D. Baleanu and R. H. Hafez},
     title = {Efficient {Jacobi{\textendash}Gauss} collocation method for solving initial value problems of {Bratu-type}},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1480},
     year = {2013},
     volume = {53},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a4/}
}
TY  - JOUR
AU  - E. H. Doha
AU  - A. H. Bhrawy
AU  - D. Baleanu
AU  - R. H. Hafez
TI  - Efficient Jacobi–Gauss collocation method for solving initial value problems of Bratu-type
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1480
VL  - 53
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a4/
LA  - en
ID  - ZVMMF_2013_53_9_a4
ER  - 
%0 Journal Article
%A E. H. Doha
%A A. H. Bhrawy
%A D. Baleanu
%A R. H. Hafez
%T Efficient Jacobi–Gauss collocation method for solving initial value problems of Bratu-type
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1480
%V 53
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a4/
%G en
%F ZVMMF_2013_53_9_a4
E. H. Doha; A. H. Bhrawy; D. Baleanu; R. H. Hafez. Efficient Jacobi–Gauss collocation method for solving initial value problems of Bratu-type. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 9. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a4/

[1] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods in Fluid Dynamics, Springer, New York, 1988 | MR | Zbl

[2] B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge Univ. Press, Cambridge, MA, 1998 | MR | Zbl

[3] R. Peyret, Spectral Methods for Incompressible Viscous Flow, Springer, New York, 2002 | MR | Zbl

[4] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, PA, 2000 | MR

[5] A. H. Bhrawy, M. Alshomrani, “A Jacobi dual-Petrov Galerkin–Jacobi collocation method for solving Korteweg-de Vries equations”, Abstract Appl. Anal., 2012, 418943, 16 pp. | MR | Zbl

[6] E. H. Doha, A. H. Bhrawy, “Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials”, Appl. Numer. Math., 58 (2008), 1224–1244 | DOI | MR | Zbl

[7] E. H. Doha, A. H. Bhrawy, “An efficient direct solver for multidimensional elliptic Robin boundary value problems using a Legendre spectral-Galerkin method”, Comput. Math. Appl., 64 (2012), 558–571 | DOI | MR | Zbl

[8] E. H. Doha, A. H. Bhrawy, R. M. Hafez, “A Jacobi dual-Petrov–Galerkin method for solving some odd order ordinary differential equations”, Abstract Appl. Anal., 2011, 947230, 21 pp. | MR | Zbl

[9] E. H. Doha, A. H. Bhrawy, “A Jacobi spectral Galerkin method for the integrated forms of fourth-order elliptic differential equations”, Numer. Methods Partial Differ. Equations, 25 (2009), 712–739 | DOI | MR | Zbl

[10] B.-Y. Guo, J.-P. Yan, “Legendre–Gauss collocation method for initial value problems of second order ordinary differential equations”, Appl. Numer. Math., 59 (2009), 1386–1408 | DOI | MR | Zbl

[11] A. H. Bhrawy, M. A. Alghamdi, “A shifted Jacobi–Gauss–Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals”, Boundary Value Probl., 62 (2012) | MR

[12] E. H. Doha, A. H. Bhrawy, R. M. Hafez, “On shifted Jacobi spectral method for high-order multi-point boundary value problems”, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3802–3810 | DOI | MR | Zbl

[13] U. M. Ascher, R. Matheij, R. D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM, Philadelphia, PA, 1995 | MR

[14] C. K. Chui, Wavelets: A Mathematical Tool for Signal Analysis, SIAM, Philadelphia, PA, 1997 | MR

[15] H. T. Davis, Introduction to Nonlinear Differential and Integral Equations, Dover, New York, 1962 | MR | Zbl

[16] D. A. Frank-Kamenetski, Diffusion and Heat Exchange in Chemical Kinetics, Princeton Univ. Press, Princeton, NJ, 1955

[17] I. H. A. H. Hassan, V. S. Erturk, “Applying differential transformation method to the one-dimensional planar Bratu problem”, Int. J. Contemp. Math. Sci., 2 (2007), 1493–1504 | MR | Zbl

[18] H. Caglar, N. Caglar, M. Ozer, A. Valaristos, A. N. Miliou, A. N. Anagnostopoulos, “Dynamics of the solution of Bratu's equation”, Nonlin. Anal. Theory Methods Appl., 71 (2009), 672–678 | DOI | MR

[19] S. Chandrasekhar, Introduction to the Study of Stellar Structure, Dover, New York, 1967 | MR

[20] C. H. Hsiao, “Haar wavelet approach to linear stiff systems”, Math. Comput. Simul., 64 (2004), 561–567 | DOI | MR | Zbl

[21] J. Jacobson, K. Schmitt, “The Liouville–Bratu–Gelfand problem for radial operators”, J. Differ. Equations, 184 (2002), 283–298 | DOI | MR

[22] U. Lepik, “Numerical solution of evolution equations by the Haar wavelet method”, Appl. Math. Comput., 185 (2007), 695–704 | DOI | MR | Zbl

[23] U. Lepik, “Numerical solution of differential equations using Haar wavelets”, Math. Comput. Simul., 68 (2005), 127–143 | DOI | MR | Zbl

[24] A. S. Mounim, “From the fitting techniques to accurate schemes for the Liouville–Bratu–Gelfand problem”, Numer. Methods Partial Differ. Equations, 22 (2006), 761–775 | DOI | MR | Zbl

[25] A. M. Wazwaz, “A new method for solving singular initial value problems in the second order differential equations”, Appl. Math. Comput., 128 (2002), 47–57 | DOI | MR

[26] J. P. Boyd, “Chebyshev polynomial expansions for simultaneous approximation of two branches of a function with application to the one dimensional Bratu equation”, Appl. Math. Comput., 142 (2003), 189–200 | DOI | MR

[27] J. P. Boyd, “An analytical and numerical study of the two-dimensional Bratu equation”, J. Sci. Comput., 1 (1986), 183–206 | DOI | Zbl

[28] R. Buckmire, “Investigations of nonstandard Mickens-type finite difference schemes for singular boundary value problems in cylindrical or spherical coordinates”, Numer. Methods Partial Differ. Equations, 19 (2003), 380–398 | DOI | MR | Zbl

[29] R. Buckmire, “Application of Mickens finite-difference scheme to the cylindrical Bratu–Gelfand problem”, Numer. Methods Partial Differ. Equations, 20 (2004), 327–337 | DOI | MR | Zbl

[30] M. I. Syam, A. Hamdan, “An efficient method for solving Bratu equations”, Appl. Math. Comput., 176 (2006), 704–713 | DOI | MR | Zbl

[31] Y. Aksoy, M. Pakdemirli, “New perturbation iteration solutions for Bratu-type equations”, Comput. Math. Appl., 59 (2010), 2802–2808 | DOI | MR | Zbl

[32] A. M. Wazwaz, “A domain decomposition method for a reliable treatment of the Bratu type equations”, Appl. Math. Comput., 166 (2005), 652–663 | DOI | MR | Zbl

[33] S. Abbasbandy, M. S. Hashemi, C.-S. Liu, “The Lie-group shooting method for solving the Bratu equation”, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 4238–4249 | DOI | MR | Zbl

[34] S. G. Venkatesh, S. K. Ayyaswamy, S. R. Balachandar, “The Legendre wavelet method for solving initial value problems of Bratu type”, Comput. Math. Appl., 63 (2012), 1287–1295 | DOI | MR | Zbl

[35] A. H. Bhrawy, M. Alshomrani, “A shifted Legendre spectral method for fractional-order multi-point boundary value problems”, Adv. Differ. Equations, 8 (2012)

[36] A. H. Bhrawy, A. S. Alofi, “A Jacobi–Gauss collocation method for solving nonlinear Lane–Emden type equations”, Commun. Nonlin. Sci. Numer. Simul., 17 (2012), 62–70 | DOI | MR | Zbl

[37] M. Abukhaled, S. Khuri, A. Sayfy, “Spline-based numerical treatments of Bratu-type equations”, Palestine J. Math., 1 (2012), 63–70 | MR | Zbl

[38] S. Liao, Y. Tan, “A general approach to obtain series solutions of nonlinear differential equations”, Stud. Appl. Math., 119 (2007), 297–354 | DOI | MR

[39] J. S. McGough, “Numerical continuation and the Gelfand problem”, Appl. Math. Comput., 89 (1998), 225–239 | DOI | MR | Zbl

[40] H. Caglar, N. Caglar, M. Ozer, A. Valaristos, A. N. Anagnostopoulos, “B-spline method for solving Bratu's problem”, Int. J. Comput. Math., 87 (2010), 1885–1891 | DOI | MR | Zbl

[41] M. Zarebnia, Z. Sarvari, “Parametric spline method for solving Bratu's problem”, Int. J. Nonlin. Sci., 14 (2012), 3–10 | MR