@article{ZVMMF_2013_53_9_a4,
author = {E. H. Doha and A. H. Bhrawy and D. Baleanu and R. H. Hafez},
title = {Efficient {Jacobi{\textendash}Gauss} collocation method for solving initial value problems of {Bratu-type}},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1480},
year = {2013},
volume = {53},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a4/}
}
TY - JOUR AU - E. H. Doha AU - A. H. Bhrawy AU - D. Baleanu AU - R. H. Hafez TI - Efficient Jacobi–Gauss collocation method for solving initial value problems of Bratu-type JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1480 VL - 53 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a4/ LA - en ID - ZVMMF_2013_53_9_a4 ER -
%0 Journal Article %A E. H. Doha %A A. H. Bhrawy %A D. Baleanu %A R. H. Hafez %T Efficient Jacobi–Gauss collocation method for solving initial value problems of Bratu-type %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 1480 %V 53 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a4/ %G en %F ZVMMF_2013_53_9_a4
E. H. Doha; A. H. Bhrawy; D. Baleanu; R. H. Hafez. Efficient Jacobi–Gauss collocation method for solving initial value problems of Bratu-type. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 9. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a4/
[1] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods in Fluid Dynamics, Springer, New York, 1988 | MR | Zbl
[2] B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge Univ. Press, Cambridge, MA, 1998 | MR | Zbl
[3] R. Peyret, Spectral Methods for Incompressible Viscous Flow, Springer, New York, 2002 | MR | Zbl
[4] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, PA, 2000 | MR
[5] A. H. Bhrawy, M. Alshomrani, “A Jacobi dual-Petrov Galerkin–Jacobi collocation method for solving Korteweg-de Vries equations”, Abstract Appl. Anal., 2012, 418943, 16 pp. | MR | Zbl
[6] E. H. Doha, A. H. Bhrawy, “Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials”, Appl. Numer. Math., 58 (2008), 1224–1244 | DOI | MR | Zbl
[7] E. H. Doha, A. H. Bhrawy, “An efficient direct solver for multidimensional elliptic Robin boundary value problems using a Legendre spectral-Galerkin method”, Comput. Math. Appl., 64 (2012), 558–571 | DOI | MR | Zbl
[8] E. H. Doha, A. H. Bhrawy, R. M. Hafez, “A Jacobi dual-Petrov–Galerkin method for solving some odd order ordinary differential equations”, Abstract Appl. Anal., 2011, 947230, 21 pp. | MR | Zbl
[9] E. H. Doha, A. H. Bhrawy, “A Jacobi spectral Galerkin method for the integrated forms of fourth-order elliptic differential equations”, Numer. Methods Partial Differ. Equations, 25 (2009), 712–739 | DOI | MR | Zbl
[10] B.-Y. Guo, J.-P. Yan, “Legendre–Gauss collocation method for initial value problems of second order ordinary differential equations”, Appl. Numer. Math., 59 (2009), 1386–1408 | DOI | MR | Zbl
[11] A. H. Bhrawy, M. A. Alghamdi, “A shifted Jacobi–Gauss–Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals”, Boundary Value Probl., 62 (2012) | MR
[12] E. H. Doha, A. H. Bhrawy, R. M. Hafez, “On shifted Jacobi spectral method for high-order multi-point boundary value problems”, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3802–3810 | DOI | MR | Zbl
[13] U. M. Ascher, R. Matheij, R. D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM, Philadelphia, PA, 1995 | MR
[14] C. K. Chui, Wavelets: A Mathematical Tool for Signal Analysis, SIAM, Philadelphia, PA, 1997 | MR
[15] H. T. Davis, Introduction to Nonlinear Differential and Integral Equations, Dover, New York, 1962 | MR | Zbl
[16] D. A. Frank-Kamenetski, Diffusion and Heat Exchange in Chemical Kinetics, Princeton Univ. Press, Princeton, NJ, 1955
[17] I. H. A. H. Hassan, V. S. Erturk, “Applying differential transformation method to the one-dimensional planar Bratu problem”, Int. J. Contemp. Math. Sci., 2 (2007), 1493–1504 | MR | Zbl
[18] H. Caglar, N. Caglar, M. Ozer, A. Valaristos, A. N. Miliou, A. N. Anagnostopoulos, “Dynamics of the solution of Bratu's equation”, Nonlin. Anal. Theory Methods Appl., 71 (2009), 672–678 | DOI | MR
[19] S. Chandrasekhar, Introduction to the Study of Stellar Structure, Dover, New York, 1967 | MR
[20] C. H. Hsiao, “Haar wavelet approach to linear stiff systems”, Math. Comput. Simul., 64 (2004), 561–567 | DOI | MR | Zbl
[21] J. Jacobson, K. Schmitt, “The Liouville–Bratu–Gelfand problem for radial operators”, J. Differ. Equations, 184 (2002), 283–298 | DOI | MR
[22] U. Lepik, “Numerical solution of evolution equations by the Haar wavelet method”, Appl. Math. Comput., 185 (2007), 695–704 | DOI | MR | Zbl
[23] U. Lepik, “Numerical solution of differential equations using Haar wavelets”, Math. Comput. Simul., 68 (2005), 127–143 | DOI | MR | Zbl
[24] A. S. Mounim, “From the fitting techniques to accurate schemes for the Liouville–Bratu–Gelfand problem”, Numer. Methods Partial Differ. Equations, 22 (2006), 761–775 | DOI | MR | Zbl
[25] A. M. Wazwaz, “A new method for solving singular initial value problems in the second order differential equations”, Appl. Math. Comput., 128 (2002), 47–57 | DOI | MR
[26] J. P. Boyd, “Chebyshev polynomial expansions for simultaneous approximation of two branches of a function with application to the one dimensional Bratu equation”, Appl. Math. Comput., 142 (2003), 189–200 | DOI | MR
[27] J. P. Boyd, “An analytical and numerical study of the two-dimensional Bratu equation”, J. Sci. Comput., 1 (1986), 183–206 | DOI | Zbl
[28] R. Buckmire, “Investigations of nonstandard Mickens-type finite difference schemes for singular boundary value problems in cylindrical or spherical coordinates”, Numer. Methods Partial Differ. Equations, 19 (2003), 380–398 | DOI | MR | Zbl
[29] R. Buckmire, “Application of Mickens finite-difference scheme to the cylindrical Bratu–Gelfand problem”, Numer. Methods Partial Differ. Equations, 20 (2004), 327–337 | DOI | MR | Zbl
[30] M. I. Syam, A. Hamdan, “An efficient method for solving Bratu equations”, Appl. Math. Comput., 176 (2006), 704–713 | DOI | MR | Zbl
[31] Y. Aksoy, M. Pakdemirli, “New perturbation iteration solutions for Bratu-type equations”, Comput. Math. Appl., 59 (2010), 2802–2808 | DOI | MR | Zbl
[32] A. M. Wazwaz, “A domain decomposition method for a reliable treatment of the Bratu type equations”, Appl. Math. Comput., 166 (2005), 652–663 | DOI | MR | Zbl
[33] S. Abbasbandy, M. S. Hashemi, C.-S. Liu, “The Lie-group shooting method for solving the Bratu equation”, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 4238–4249 | DOI | MR | Zbl
[34] S. G. Venkatesh, S. K. Ayyaswamy, S. R. Balachandar, “The Legendre wavelet method for solving initial value problems of Bratu type”, Comput. Math. Appl., 63 (2012), 1287–1295 | DOI | MR | Zbl
[35] A. H. Bhrawy, M. Alshomrani, “A shifted Legendre spectral method for fractional-order multi-point boundary value problems”, Adv. Differ. Equations, 8 (2012)
[36] A. H. Bhrawy, A. S. Alofi, “A Jacobi–Gauss collocation method for solving nonlinear Lane–Emden type equations”, Commun. Nonlin. Sci. Numer. Simul., 17 (2012), 62–70 | DOI | MR | Zbl
[37] M. Abukhaled, S. Khuri, A. Sayfy, “Spline-based numerical treatments of Bratu-type equations”, Palestine J. Math., 1 (2012), 63–70 | MR | Zbl
[38] S. Liao, Y. Tan, “A general approach to obtain series solutions of nonlinear differential equations”, Stud. Appl. Math., 119 (2007), 297–354 | DOI | MR
[39] J. S. McGough, “Numerical continuation and the Gelfand problem”, Appl. Math. Comput., 89 (1998), 225–239 | DOI | MR | Zbl
[40] H. Caglar, N. Caglar, M. Ozer, A. Valaristos, A. N. Anagnostopoulos, “B-spline method for solving Bratu's problem”, Int. J. Comput. Math., 87 (2010), 1885–1891 | DOI | MR | Zbl
[41] M. Zarebnia, Z. Sarvari, “Parametric spline method for solving Bratu's problem”, Int. J. Nonlin. Sci., 14 (2012), 3–10 | MR