On the stability of an implicit spline collocation difference scheme for linear partial differential algebraic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 9, pp. 1460-1479 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A boundary value problem for linear partial differential algebraic systems of equations with multiple characteristic curves is examined. It is assumed that the pencil of matrix functions associated with this system is smoothly equivalent to a special canonic form. The spline collocation is used to construct for this problem a difference scheme of an arbitrary approximation order with respect to each independent variable. Sufficient conditions are found for this scheme to be absolutely stable.
@article{ZVMMF_2013_53_9_a3,
     author = {S. V. Gaidomak},
     title = {On the stability of an implicit spline collocation difference scheme for linear partial differential algebraic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1460--1479},
     year = {2013},
     volume = {53},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a3/}
}
TY  - JOUR
AU  - S. V. Gaidomak
TI  - On the stability of an implicit spline collocation difference scheme for linear partial differential algebraic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1460
EP  - 1479
VL  - 53
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a3/
LA  - ru
ID  - ZVMMF_2013_53_9_a3
ER  - 
%0 Journal Article
%A S. V. Gaidomak
%T On the stability of an implicit spline collocation difference scheme for linear partial differential algebraic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1460-1479
%V 53
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a3/
%G ru
%F ZVMMF_2013_53_9_a3
S. V. Gaidomak. On the stability of an implicit spline collocation difference scheme for linear partial differential algebraic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 9, pp. 1460-1479. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a3/

[1] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauch. kniga, Novosibirsk, 1998 | MR | Zbl

[2] Ruschinskii V. M., “Prostranstvennye lineinye i nelineinye modeli kotlogeneratorov”, Voprosy identifikatsii i modelirovaniya, 1968, 8–15

[3] Campbell S. L., Marszalek W., “The index of an infinite dimensional impliscit system”, Math. Comput. Model. Systems, 5:1 (1999), 18–42 | DOI | MR | Zbl

[4] Lucht W., Strehmel K., Eichler-Liebenow C., “Indexes and special dicretization methods for linear partial differential algebraic equations”, BIT, 39:3 (1999), 484–512 | DOI | MR | Zbl

[5] Debrabant K., Strehmel K., “Convergence of Runge–Kutta methods applied to linear partia differential-algebraic equations”, Appl. Numerica. Math., 53 (2005), 213–229 | DOI | MR | Zbl

[6] Tischendorf C., “Modeling circuit systems coupled with distributed semiconductor equations”, Modeling Simulation and Optimization of Integrated Circuits, Internat. Series of Numerical Math., 146, eds. K. Antreich, R. Burlisch, A. Gilg, P. Rentrop, Birkhauser, Basel, 2003, 229–247 | MR | Zbl

[7] Tischendorf C., “Numerical analysis of DAFs from coupled circuit and semiconductor simulation”, Appl. Numerical math., 53 (2005), 471–488 | DOI | MR | Zbl

[8] Strömgern M., Hanke M., “On the numerical approximation of a degenerated hyperbolic system”, Math. and Comput. Simulat., 79 (2009), 1585–1602 | DOI | MR

[9] Lucht W., “Patrial differential-algebraic systems of second order with symmetric convection”, Appl. Numerical Math., 53 (2005), 357–371 | DOI | MR | Zbl

[10] Gaidomak S. V., Chistyakov V. F., “O sistemakh ne tipa Koshi–Kovalevskoi indeksa $(1, k)$”, Vychisl. tekhnologii, 10:2 (2005), 45–59 | Zbl

[11] Gaidomak S. V., “Trekhsloinyi raznostnyi metod resheniya lineinykh differentsialno-algebraicheskikh sistem uravnenii v chastnykh proizvodnykh”, Zh. vychisl. matem. i matem. fiz., 49:9 (2009), 1594–1608 | MR | Zbl

[12] Gaidomak S. V., “Ob ustoichivosti neyavnoi raznostnoi skhemy dlya lineinoi differentsialno-algebraicheskoi sistemy uravnenii v chastnykh proizvodnykh”, Zh. vychisl. matem. i matem. fiz., 50:4 (2010), 707–717 | MR | Zbl

[13] Gaidomak S. V., “Metod splain-kollokatsii dlya lineinykh vyrozhdennykh giperbolicheskikh sistem”, Zh. vychisl. matem. i matem. fiz., 48:7 (2008), 1230–1249 | MR

[14] Bormotova O. V., Chistyakov V. F., “O metodakh chislennogo resheniya i issledovaniya sistem ne tipa Koshi–Kovalevskoi”, Zh. vychisl. matem. i matem. fiz., 44:8 (2004), 1380–1387 | MR | Zbl

[15] Chistyakov V. F., Algebro-differentsialnye operatory s konechnomernym yadrom, Sib. izdat. firma RAN “Nauka”, Novosibirsk, 1996 | MR | Zbl

[16] Gaidomak S. V., “O kanonicheskoi strukture puchka vyrozhdennykh matrits-funktsii”, Izv. vuzov. Matem., 2012, no. 2, 23–33 | MR | Zbl

[17] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Fizmatlit, M., 1980 | MR

[18] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Knizhnyi dom “LIBROKOM”, M., 2009

[19] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 1, Nauka, M., 1966

[20] Gaidomak S. V., “Ob odnom klasse neyavnykh splain-kollokatsionnykh raznostnykh skhem”, Kompleksnyi analiz i differentsialnye uravneniya, VI Mezhdunar. Ufimskaya konf., In-t matem. s VTs UNTs RAN, Ufa, 2011, 50–51

[21] P. Lankaster, Teoriya matrits, Per. s angl., Nauka, M., 1982 | MR

[22] Verbitskii B. V., “Odno globalnoe svoistvo matrits-funktsii, zavisyaschikh ot neskolkikh peremennykh”, Izv. vuzov. Matem., 1:188 (1978), 8–17 | MR

[23] Gaidomak S. V., “O chislennom reshenii kvazilineinoi algebro-differentsialnoi sistemy”, Differents. ur-niya, 45:2 (2009), 243–249 | MR | Zbl

[24] Vorobev A. A., Romanova M. Yu., “Ob otsenkakh norm stepenei matritsy”, Vestnik VGU, Seriya: Fizika. Matematika, 2007, no. 2, 83–85 | MR

[25] Bulgakov A. Ya., “Effektivno vychislyaemyi parametr kachestva ustoichivosti sistem lineinykh differentsialnykh uravnenii s postoyannymi koeffitsientami”, Sibirskii matem. zhurnal, 21:3 (1980), 32–41 | MR | Zbl

[26] Nechepurenko Yu. M., “Otsenka normy matrichnoi eksponenty cherez normu resheniya uravneniya Lyapunova i granitsy khausdorfova mnozhestva”, Zh. vychisl. matem. i matem. fiz., 42:2 (2002), 131–141 | MR | Zbl