@article{ZVMMF_2013_53_9_a10,
author = {L. I. Sazonov},
title = {Existence of transitions between stationary regimes of the {Navier{\textendash}Stokes} equations in the entire space},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1555--1568},
year = {2013},
volume = {53},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a10/}
}
TY - JOUR AU - L. I. Sazonov TI - Existence of transitions between stationary regimes of the Navier–Stokes equations in the entire space JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1555 EP - 1568 VL - 53 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a10/ LA - ru ID - ZVMMF_2013_53_9_a10 ER -
%0 Journal Article %A L. I. Sazonov %T Existence of transitions between stationary regimes of the Navier–Stokes equations in the entire space %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 1555-1568 %V 53 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a10/ %G ru %F ZVMMF_2013_53_9_a10
L. I. Sazonov. Existence of transitions between stationary regimes of the Navier–Stokes equations in the entire space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 9, pp. 1555-1568. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a10/
[1] Finn R., “Stationary solutions of the Navier–Stokes equations”, Proc. Symp. Appl. Math., 17, Amer. Math. Soc., Providence, 1965, 121–153 | DOI
[2] Galdi G. P., Heywood J. G., Shibata Y., “On the global existence and convergence to steady state of Navier–Stokes flow past an obstacle that in stated from rest”, Arch. Rational Mech. Anal., 138 (1997), 307–318 | DOI | MR | Zbl
[3] Sobolevskii P. E., “O primenenii drobnykh stepenei samosopryazhennykh operatorov k issledovaniyu uravnenii Nave–Stoksa”, Dokl. AN SSSR, 155:1–3 (1964), 50–53 | MR
[4] Yudovich V. I., Metod linearizatsii v gidrodinamicheskoi teorii ustoichivosti, Rostov-na-Donu, 1984
[5] Kato T., “Strong $L^p$-Solutions of the Navier–Stokes equation in $R^m$, with applications to weak solutions”, Math. Z., 187 (1984), 471–480 | DOI | MR | Zbl
[6] Kobayashi T., Shibata Y., “On the Oseen equation in exterior domains”, Mathematical Research Note, University of Tsukuba, 1995 | Zbl
[7] Sazonov L. I., “Obosnovanie metoda linearizatsii v zadache obtekaniya”, Izv. RAN. Ser. matem., 58:5 (1994), 85–109 | MR | Zbl
[8] Sazonov L. I., “O suschestvovanii perekhodov mezhdu statsionarnymi rezhimami zadachi obtekaniya”, Vladikavk. matem. zh., 13:4 (2011), 60–69 | MR
[9] Sazonov L. I., “Otsenki vozmuschennoi polugruppy Ozeena”, Vladikavk. matem. zh., 11:3 (2009), 51–61 | MR
[10] Sazonov L. I., “Ob ustoichivosti statsionarnykh reshenii zadachi obtekaniya”, Izv. vyssh. uchebn. zavedenii. Severo-Kavkazskii region. Aktualnye problemy matematicheskoi gidrodinamiki, 2009, Spets. vypusk, 195–200
[11] Sazonov L. I., “Otsenki vozmuschennoi polugruppy Ozeena i ikh prilozheniya”, Itogi nauki. Yug Rossii. Matematicheskii forum, 4 (2010), 293–302
[12] Sazonov L. I., “Otsenki vozmuschennoi polugruppy Ozeena v $R^n$ i ustoichivost statsionarnykh reshenii sistemy Nave–Stoksa”, Vladikavk. matem. zh., 12:3 (2010), 71–82 | MR
[13] Sazonov L. I., “Otsenki vozmuschennoi polugruppy Ozeena i ikh prilozheniya k sisteme Nave–Stoksa v $\mathbb{R}^n$”, Matem. zametki, 91:6 (2012), 880–895 | DOI
[14] Sazonov L. I., “Trekhmernaya statsionarnaya zadacha obtekaniya pri malykh chislakh Reinoldsa”, Izv. RAN. Ser. mat., 75:6 (2011), 99–128 | DOI | MR | Zbl
[15] Babenko K. I., “O statsionarnykh resheniyakh zadachi obtekaniya tela vyazkoi neszhimaemoi zhidkostyu”, Matem. sb., 91:1 (1973), 3–26 | MR
[16] Sazonov L. I., “Ob asimptotike resheniya zadachi trekhmernogo obtekaniya vdali ot obtekaemykh tel”, Izv. RAN. Ser. mat., 59:5 (1995), 173–196 | MR | Zbl
[17] Galdi G. P., “Further properties of steady-state solutions to the Navier–Stokes problem past a three-dimensional obstacle”, J. Math. Phys., 48 (2007), 1–43 | DOI | MR
[18] Galdi G. P., An introduction to the mathematical theory of the Navier–Stokes equations. Steady-state problems, Springer, 2011 | MR | Zbl
[19] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR
[20] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR