Some new estimates of the Fourier transform in $\mathbb{L}_2(\mathbb{R})$
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 9, pp. 1419-1426
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              Given a function $\mathbb{L}_2(\mathbb{R})$, its Fourier transform $$ g(x)=\hat{f}(x)=F[f](x)=\frac1{\sqrt{2\pi}}\int_{-\infty}^{+\infty}f(x)e^{-ixt}dt,\quad f(t)=F^{-1}[g](t)=\frac1{\sqrt{2\pi}}\int_{-\infty}^{+\infty}g(x)e^{ixt}dx $$ and the inverse Fourier transform are considered in the space $f\in\mathbb{L}_2(\mathbb{R})$. New estimates are presented for the integral $ \int_{|t|\geqslant N}|g(t)|^2dt=\int_{|t|\geqslant N}|\hat{f}(t)|^2dt, \quad N\geqslant1 $, in the vase of $f\in\mathbb{L}_2(\mathbb{R})$ characterized by the generalized modulus of continuity of the $k$th order constructed with the help of the Steklov function. Some other estimates associated with this integral are proved.
            
            
            
          
        
      @article{ZVMMF_2013_53_9_a0,
     author = {V. A. Abilov and F. V. Abilova and M. K. Kerimov},
     title = {Some new estimates of the {Fourier} transform in $\mathbb{L}_2(\mathbb{R})$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1419--1426},
     publisher = {mathdoc},
     volume = {53},
     number = {9},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a0/}
}
                      
                      
                    TY  - JOUR
AU  - V. A. Abilov
AU  - F. V. Abilova
AU  - M. K. Kerimov
TI  - Some new estimates of the Fourier transform in $\mathbb{L}_2(\mathbb{R})$
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1419
EP  - 1426
VL  - 53
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a0/
LA  - ru
ID  - ZVMMF_2013_53_9_a0
ER  - 
                      
                      
                    %0 Journal Article
%A V. A. Abilov
%A F. V. Abilova
%A M. K. Kerimov
%T Some new estimates of the Fourier transform in $\mathbb{L}_2(\mathbb{R})$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1419-1426
%V 53
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a0/
%G ru
%F ZVMMF_2013_53_9_a0
                      
                      
                    V. A. Abilov; F. V. Abilova; M. K. Kerimov. Some new estimates of the Fourier transform in $\mathbb{L}_2(\mathbb{R})$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 9, pp. 1419-1426. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_9_a0/
                  
                