Discretization of second-order ordinary differential equations with symmetries
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1329-1355
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A number of publications (indicated in the Introduction) are overviewed that address the group properties, first integrals, and integrability of difference equations and meshes approximating second-order ordinary differential equations with symmetries. A new example of such equations is discussed in the overview. Additionally, it is shown that the parametric families of invariant difference schemes include exact schemes, i.e., schemes whose general solution coincides with the corresponding solution set of the differential equations at mesh nodes, which can be of arbitrary density. Thereby, it is shown that there is a kind of mathematical dualism for the problems under study: for a given physical process, there are two mathematical models: continuous and discrete. The former is described by continuous curves, while the latter, by points on these curves.
@article{ZVMMF_2013_53_8_a9,
     author = {V. A. Dorodnitsyn and E. I. Kaptsov},
     title = {Discretization of second-order ordinary differential equations with symmetries},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1329--1355},
     year = {2013},
     volume = {53},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a9/}
}
TY  - JOUR
AU  - V. A. Dorodnitsyn
AU  - E. I. Kaptsov
TI  - Discretization of second-order ordinary differential equations with symmetries
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1329
EP  - 1355
VL  - 53
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a9/
LA  - ru
ID  - ZVMMF_2013_53_8_a9
ER  - 
%0 Journal Article
%A V. A. Dorodnitsyn
%A E. I. Kaptsov
%T Discretization of second-order ordinary differential equations with symmetries
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1329-1355
%V 53
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a9/
%G ru
%F ZVMMF_2013_53_8_a9
V. A. Dorodnitsyn; E. I. Kaptsov. Discretization of second-order ordinary differential equations with symmetries. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1329-1355. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a9/

[1] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[2] Olver P., Prilozhenie grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[3] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[4] Nëter E., Invariantnye variatsionnye zadachi. Variatsionnye printsipy mekhaniki, Fizmatgiz, M., 1959

[5] Dorodnitsyn V. A., “Gruppy preobrazovanii v setochnykh prostranstvakh”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 34, VINITI, M., 1989

[6] Dorodnitsyn V. A., “Konechno-raznostnyi analog teoremy Nëter”, Dokl. AN, 328:6 (1993), 678 | MR | Zbl

[7] Dorodnitsyn V., Kozlov R., Winternitz P., “Lie group classification of second order difference equations”, J. Math. Phys., 41:1 (2000), 480–504 | DOI | MR | Zbl

[8] Dorodnitsyn V., “Noether-type theorems for difference equations”, Appl. Numer. Math., 39 (2001), 307–321 | DOI | MR | Zbl

[9] Ames W. F., Anderson R. L., Dorodnitsyn V. A. et al., CRC-Handbook of Lie group analysis of differenctial equations, v. 1, Symmetries, Exact Solutions and Conservation Laws, CRC Press, 1994 | MR

[10] Dorodnitsyn V. A., Gruppovye svoistva raznostnykh uravnenii, Fizmatlit, M., 2001 | Zbl

[11] Dorodnitsyn V., Kozlov R., Winternitz P., “Continuous symmetries of Lagrangians and exact solutions of discrete equations”, J. Math. Phys., 45:1 (2004), 446–359 | DOI | MR

[12] Dorodnitsyn V., Kozlov R., Winternitz P., “Symmetries, Lagrangian formalism and integration of second order ODEs”, J. Nonlinear Math. Phys., 10:2 (2003), 41–56 | DOI | MR

[13] Dorodnitsyn V., Kozlov R., “First integrals of difference Hamiltonian equations”, J. Phys. A: Math. Theor., 42 (2009) | DOI | MR | Zbl

[14] Dorodnitsyn V., Kozlov R., “Invariance and first integrals of continuous and discrete Hamiltonian equations”, J. Eng. Math., 66 (2010), 253–270 | DOI | MR | Zbl

[15] Dorodnitsyn V., Kozlov R., “Lagrangian and Hamiltonian formalism for discrete equations: symmetries and first integrals”, SMS Lecture Notes, Cambridge University Press, 2011, 7–49 | Zbl

[16] Rodrigues M. A., Winternitz P., “Lie symmetries and exact solutions of first-order difference schemes”, J. Phys. A: Math. Gen., 37:27 (2004), 6125–6142 | MR

[17] Kozlov R., “Conservative discretizations of the Kepler motion”, J. Phys. A, 40:17 (2007), 4529–4539 | DOI | MR | Zbl

[18] Dorodnitsyn V., Applications of Lie groups to difference equations, Chapman Hall/CRC differential and integral equations series, 2011 | MR

[19] Dorodnitsyn V., “On the linearization of second-order differential and difference equations”, Sigma, 2 (2006), 065, arXiv: nlin.SI/0608038 | MR | Zbl