@article{ZVMMF_2013_53_8_a9,
author = {V. A. Dorodnitsyn and E. I. Kaptsov},
title = {Discretization of second-order ordinary differential equations with symmetries},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1329--1355},
year = {2013},
volume = {53},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a9/}
}
TY - JOUR AU - V. A. Dorodnitsyn AU - E. I. Kaptsov TI - Discretization of second-order ordinary differential equations with symmetries JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1329 EP - 1355 VL - 53 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a9/ LA - ru ID - ZVMMF_2013_53_8_a9 ER -
%0 Journal Article %A V. A. Dorodnitsyn %A E. I. Kaptsov %T Discretization of second-order ordinary differential equations with symmetries %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 1329-1355 %V 53 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a9/ %G ru %F ZVMMF_2013_53_8_a9
V. A. Dorodnitsyn; E. I. Kaptsov. Discretization of second-order ordinary differential equations with symmetries. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1329-1355. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a9/
[1] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR
[2] Olver P., Prilozhenie grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl
[3] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR
[4] Nëter E., Invariantnye variatsionnye zadachi. Variatsionnye printsipy mekhaniki, Fizmatgiz, M., 1959
[5] Dorodnitsyn V. A., “Gruppy preobrazovanii v setochnykh prostranstvakh”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 34, VINITI, M., 1989
[6] Dorodnitsyn V. A., “Konechno-raznostnyi analog teoremy Nëter”, Dokl. AN, 328:6 (1993), 678 | MR | Zbl
[7] Dorodnitsyn V., Kozlov R., Winternitz P., “Lie group classification of second order difference equations”, J. Math. Phys., 41:1 (2000), 480–504 | DOI | MR | Zbl
[8] Dorodnitsyn V., “Noether-type theorems for difference equations”, Appl. Numer. Math., 39 (2001), 307–321 | DOI | MR | Zbl
[9] Ames W. F., Anderson R. L., Dorodnitsyn V. A. et al., CRC-Handbook of Lie group analysis of differenctial equations, v. 1, Symmetries, Exact Solutions and Conservation Laws, CRC Press, 1994 | MR
[10] Dorodnitsyn V. A., Gruppovye svoistva raznostnykh uravnenii, Fizmatlit, M., 2001 | Zbl
[11] Dorodnitsyn V., Kozlov R., Winternitz P., “Continuous symmetries of Lagrangians and exact solutions of discrete equations”, J. Math. Phys., 45:1 (2004), 446–359 | DOI | MR
[12] Dorodnitsyn V., Kozlov R., Winternitz P., “Symmetries, Lagrangian formalism and integration of second order ODEs”, J. Nonlinear Math. Phys., 10:2 (2003), 41–56 | DOI | MR
[13] Dorodnitsyn V., Kozlov R., “First integrals of difference Hamiltonian equations”, J. Phys. A: Math. Theor., 42 (2009) | DOI | MR | Zbl
[14] Dorodnitsyn V., Kozlov R., “Invariance and first integrals of continuous and discrete Hamiltonian equations”, J. Eng. Math., 66 (2010), 253–270 | DOI | MR | Zbl
[15] Dorodnitsyn V., Kozlov R., “Lagrangian and Hamiltonian formalism for discrete equations: symmetries and first integrals”, SMS Lecture Notes, Cambridge University Press, 2011, 7–49 | Zbl
[16] Rodrigues M. A., Winternitz P., “Lie symmetries and exact solutions of first-order difference schemes”, J. Phys. A: Math. Gen., 37:27 (2004), 6125–6142 | MR
[17] Kozlov R., “Conservative discretizations of the Kepler motion”, J. Phys. A, 40:17 (2007), 4529–4539 | DOI | MR | Zbl
[18] Dorodnitsyn V., Applications of Lie groups to difference equations, Chapman Hall/CRC differential and integral equations series, 2011 | MR
[19] Dorodnitsyn V., “On the linearization of second-order differential and difference equations”, Sigma, 2 (2006), 065, arXiv: nlin.SI/0608038 | MR | Zbl