@article{ZVMMF_2013_53_8_a7,
author = {E. A. Volkov},
title = {Approximate grid solution of a nonlocal boundary value problem for {Laplace{\textquoteright}s} equation on a rectangle},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1302--1313},
year = {2013},
volume = {53},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a7/}
}
TY - JOUR AU - E. A. Volkov TI - Approximate grid solution of a nonlocal boundary value problem for Laplace’s equation on a rectangle JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1302 EP - 1313 VL - 53 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a7/ LA - ru ID - ZVMMF_2013_53_8_a7 ER -
%0 Journal Article %A E. A. Volkov %T Approximate grid solution of a nonlocal boundary value problem for Laplace’s equation on a rectangle %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 1302-1313 %V 53 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a7/ %G ru %F ZVMMF_2013_53_8_a7
E. A. Volkov. Approximate grid solution of a nonlocal boundary value problem for Laplace’s equation on a rectangle. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1302-1313. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a7/
[1] Bitsadze A. V., Samarskii A. A., “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, Dokl. AN SSSR, 185:4 (1969), 739–740 | Zbl
[2] Wasow W., “On the truncation error in the solution of Laplace's equation by finite differences”, J. Res. Nat. Bur. Stand., 48 (1952), 345–348 | DOI | MR
[3] Volkov E. A., “Asimptoticheski bystryi priblizhennyi metod nakhozhdeniya na setochnykh otrezkakh resheniya raznostnogo uravneniya Laplasa”, Tr. MIAN SSSR, 173, M., 1986, 69–89 | Zbl
[4] Ilin V. A., Moiseev E. I., “Dvumernaya nelokalnaya kraevaya zadacha dlya operatora Puassona v differentsialnoi i raznostnoi traktovkakh”, Mat. modelirovanie, 2:8 (1990), 139–156 | MR
[5] Skubachevskii A. L., “Neklassicheskie kraevye zadachi. I”, Sovremennaya matematika. Fundamentalnye napravleniya, 26, 2007, 3–132 | MR
[6] Skubachevskii A. L., “Neklassicheskie kraevye zadachi. II”, Sovremennaya matematika. Fundamentalnye napravleniya, 33 (2009), 3–179 | MR
[7] Keldysh M. V., “O razreshimosti i ustoichivosti zadachi Dirikhle”, Uspekhi matem. nauk, 1940, no. 8, 171–231
[8] Kellog O. D., “On the derivatives of harmonic functions on the boundary”, Trans. Amer. Math. Soc., 33:2 (1931), 486–510 | DOI | MR
[9] Volkov E. A., “O metode regulyarnykh sostavnykh setok dlya uravneniya Laplasa na mnogougolnikakh”, Tr. MIAN SSSR, 140, M., 1976, 68–102 | MR | Zbl
[10] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR
[11] Volkov E. A., “O differentsialnykh svoistvakh reshenii kraevykh zadach dlya uravnenii Laplasa i Puassona na pryamougolnike”, Tr. MIAN SSSR, 77, M., 1965, 89–112 | Zbl
[12] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl