A singularly perturbed elliptic problem in the case of a multiple root of the degenerate equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1291-1301

Voir la notice de l'article provenant de la source Math-Net.Ru

The solution of a singularly perturbed elliptic boundary value problem is constructed, and an asymptotic expansion of the boundary-layer solution in the case of a double root of the degenerate equation is justified. The multiplicity of the root leads to a qualitative change in the asymptotic representation of the solution as compared with the case of a simple root.
@article{ZVMMF_2013_53_8_a6,
     author = {V. A. Beloshapko and V. F. Butuzov},
     title = {A singularly perturbed elliptic problem in the case of a multiple root of the degenerate equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1291--1301},
     publisher = {mathdoc},
     volume = {53},
     number = {8},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a6/}
}
TY  - JOUR
AU  - V. A. Beloshapko
AU  - V. F. Butuzov
TI  - A singularly perturbed elliptic problem in the case of a multiple root of the degenerate equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1291
EP  - 1301
VL  - 53
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a6/
LA  - ru
ID  - ZVMMF_2013_53_8_a6
ER  - 
%0 Journal Article
%A V. A. Beloshapko
%A V. F. Butuzov
%T A singularly perturbed elliptic problem in the case of a multiple root of the degenerate equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1291-1301
%V 53
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a6/
%G ru
%F ZVMMF_2013_53_8_a6
V. A. Beloshapko; V. F. Butuzov. A singularly perturbed elliptic problem in the case of a multiple root of the degenerate equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1291-1301. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a6/