@article{ZVMMF_2013_53_8_a3,
author = {A. V. Kanatov and M. I. Sumin},
title = {Sequential stable {Kuhn{\textendash}Tucker} theorem in nonlinear programming},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1249--1271},
year = {2013},
volume = {53},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a3/}
}
TY - JOUR AU - A. V. Kanatov AU - M. I. Sumin TI - Sequential stable Kuhn–Tucker theorem in nonlinear programming JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1249 EP - 1271 VL - 53 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a3/ LA - ru ID - ZVMMF_2013_53_8_a3 ER -
A. V. Kanatov; M. I. Sumin. Sequential stable Kuhn–Tucker theorem in nonlinear programming. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1249-1271. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a3/
[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR
[2] Sukharev A. G., Timokhov A. V., Fedorov V. V., Kurs metodov optimizatsii, Nauka, M., 1986 | MR | Zbl
[3] Vasilev F. P., Metody optimizatsii, V 2-kh kn., MTsNMO, M., 2011
[4] Minu M., Matematicheskoe programmirovanie. Teoriya i algoritmy, Nauka, M., 1990 | MR
[5] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988 | MR
[6] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR
[7] Sumin M. I., “Regulyarizovannaya parametricheskaya teorema Kuna–Takkera v gilbertovom prostranstve”, Zh. vychisl. matem. i matem. fiz., 51:9 (2011), 1594–1615 | MR | Zbl
[8] Sumin M. I., “On the stable sequential Kuhn–Tucker theorem and its applications”, Appl. Math., 3:10A, Special issue “Optimization” (2012), 1334–1350
[9] Sumin M. I., “Optimalnoe upravlenie parabolicheskimi uravneniyami: dvoistvennye chislennye metody, regulyarizatsiya”, Raspredelennye sistemy: optimizatsiya i prilozheniya v ekonomike i naukakh ob okruzhayuschei srede, In-t matem. i mekhan. UrO RAN, Ekaterinburg, 2000, 66–69
[10] Sumin M. I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 44:11 (2004), 2001–2019 | MR | Zbl
[11] Sumin M. I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | MR | Zbl
[12] Sumin M. I., “Parametric dual regularization in a linear-convex mathematical programming”, Comput. Optimizat. New Res. Developments, Ch. 10, Nova Sci. Publ. Inc., New–York, 2010, 265–311
[13] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR
[14] Sumin M. I., “Regulyarizovannyi dvoistvennyi metod resheniya nelineinoi zadachi matematicheskogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 47:5 (2007), 796–816 | MR | Zbl
[15] Sumin M. I., “Parametric dual regularization in a nonlinear mathematical programming”, Ch. 5, Advances Math. Res., 11, Nova Sci. Publ. Inc., New–York, 2010, 103–134
[16] Borwein J. M., Strojwas H. M., “Proximal analysis and boundaries of closed sets in banach space. Part I: Theory”, Can. J. Math., 38:2 (1986), 431–452 ; “Part II: Applications”, Can. J. Math., 39:2 (1987), 428–472 | DOI | MR | Zbl | DOI | Zbl
[17] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl
[18] Loewen P. D., Optimal control via nonsmooth analysis, CRM Proc. Lecture Notes, 2, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[19] Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R., Nonsmooth analysis and control theory, Graduate Texts in Mathematics, 178, Springer-Verlag, New York, 1998 | MR | Zbl
[20] Mordukhovich B. S., Variational analysis and generalized differentiation, v. I, Basic theory ; v. II, Applications, Springer-Verlag, Berlin, 2006 | MR
[21] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987 | MR | Zbl
[22] Sumin M. I., “Suboptimalnoe upravlenie sistemami s raspredelennymi parametrami: minimiziruyuschie posledovatelnosti, funktsiya znachenii”, Zh. vychisl. matem. i matem. fiz., 37:1 (1997), 23–41 | MR | Zbl
[23] Ekeland I., “On the variational principle”, J. Math. Anal. Appl., 47:2 (1974), 324–353 | DOI | MR | Zbl