Sequential stable Kuhn–Tucker theorem in nonlinear programming
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1249-1271
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              A general parametric nonlinear mathematical programming problem with an operator equality constraint and a finite number of functional inequality constraints is considered in a Hilbert space. Elements of a minimizing sequence for this problem are formally constructed from elements of minimizing sequences for its augmented Lagrangian with values of dual variables chosen by applying the Tikhonov stabilization method in the course of solving the corresponding modified dual problem. A sequential Kuhn–Tucker theorem in nondifferential form is proved in terms of minimizing sequences and augmented Lagrangians. The theorem is stable with respect to errors in the initial data and provides a necessary and sufficient condition on the elements of a minimizing sequence. It is shown that the structure of the augmented Lagrangian is a direct consequence of the generalized differentiability properties of the value function in the problem. The proof is based on a “nonlinear” version of the dual regularization method, which is substantiated in this paper. An example is given illustrating that the formal construction of a minimizing sequence is unstable without regularizing the solution of the modified dual problem.
            
            
            
          
        
      @article{ZVMMF_2013_53_8_a3,
     author = {A. V. Kanatov and M. I. Sumin},
     title = {Sequential stable {Kuhn{\textendash}Tucker} theorem in nonlinear programming},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1249--1271},
     publisher = {mathdoc},
     volume = {53},
     number = {8},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a3/}
}
                      
                      
                    TY - JOUR AU - A. V. Kanatov AU - M. I. Sumin TI - Sequential stable Kuhn–Tucker theorem in nonlinear programming JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1249 EP - 1271 VL - 53 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a3/ LA - ru ID - ZVMMF_2013_53_8_a3 ER -
%0 Journal Article %A A. V. Kanatov %A M. I. Sumin %T Sequential stable Kuhn–Tucker theorem in nonlinear programming %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 1249-1271 %V 53 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a3/ %G ru %F ZVMMF_2013_53_8_a3
A. V. Kanatov; M. I. Sumin. Sequential stable Kuhn–Tucker theorem in nonlinear programming. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1249-1271. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a3/
