Sequential stable Kuhn–Tucker theorem in nonlinear programming
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1249-1271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general parametric nonlinear mathematical programming problem with an operator equality constraint and a finite number of functional inequality constraints is considered in a Hilbert space. Elements of a minimizing sequence for this problem are formally constructed from elements of minimizing sequences for its augmented Lagrangian with values of dual variables chosen by applying the Tikhonov stabilization method in the course of solving the corresponding modified dual problem. A sequential Kuhn–Tucker theorem in nondifferential form is proved in terms of minimizing sequences and augmented Lagrangians. The theorem is stable with respect to errors in the initial data and provides a necessary and sufficient condition on the elements of a minimizing sequence. It is shown that the structure of the augmented Lagrangian is a direct consequence of the generalized differentiability properties of the value function in the problem. The proof is based on a “nonlinear” version of the dual regularization method, which is substantiated in this paper. An example is given illustrating that the formal construction of a minimizing sequence is unstable without regularizing the solution of the modified dual problem.
@article{ZVMMF_2013_53_8_a3,
     author = {A. V. Kanatov and M. I. Sumin},
     title = {Sequential stable {Kuhn{\textendash}Tucker} theorem in nonlinear programming},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1249--1271},
     year = {2013},
     volume = {53},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a3/}
}
TY  - JOUR
AU  - A. V. Kanatov
AU  - M. I. Sumin
TI  - Sequential stable Kuhn–Tucker theorem in nonlinear programming
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1249
EP  - 1271
VL  - 53
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a3/
LA  - ru
ID  - ZVMMF_2013_53_8_a3
ER  - 
%0 Journal Article
%A A. V. Kanatov
%A M. I. Sumin
%T Sequential stable Kuhn–Tucker theorem in nonlinear programming
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1249-1271
%V 53
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a3/
%G ru
%F ZVMMF_2013_53_8_a3
A. V. Kanatov; M. I. Sumin. Sequential stable Kuhn–Tucker theorem in nonlinear programming. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1249-1271. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a3/

[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[2] Sukharev A. G., Timokhov A. V., Fedorov V. V., Kurs metodov optimizatsii, Nauka, M., 1986 | MR | Zbl

[3] Vasilev F. P., Metody optimizatsii, V 2-kh kn., MTsNMO, M., 2011

[4] Minu M., Matematicheskoe programmirovanie. Teoriya i algoritmy, Nauka, M., 1990 | MR

[5] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988 | MR

[6] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR

[7] Sumin M. I., “Regulyarizovannaya parametricheskaya teorema Kuna–Takkera v gilbertovom prostranstve”, Zh. vychisl. matem. i matem. fiz., 51:9 (2011), 1594–1615 | MR | Zbl

[8] Sumin M. I., “On the stable sequential Kuhn–Tucker theorem and its applications”, Appl. Math., 3:10A, Special issue “Optimization” (2012), 1334–1350

[9] Sumin M. I., “Optimalnoe upravlenie parabolicheskimi uravneniyami: dvoistvennye chislennye metody, regulyarizatsiya”, Raspredelennye sistemy: optimizatsiya i prilozheniya v ekonomike i naukakh ob okruzhayuschei srede, In-t matem. i mekhan. UrO RAN, Ekaterinburg, 2000, 66–69

[10] Sumin M. I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 44:11 (2004), 2001–2019 | MR | Zbl

[11] Sumin M. I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | MR | Zbl

[12] Sumin M. I., “Parametric dual regularization in a linear-convex mathematical programming”, Comput. Optimizat. New Res. Developments, Ch. 10, Nova Sci. Publ. Inc., New–York, 2010, 265–311

[13] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[14] Sumin M. I., “Regulyarizovannyi dvoistvennyi metod resheniya nelineinoi zadachi matematicheskogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 47:5 (2007), 796–816 | MR | Zbl

[15] Sumin M. I., “Parametric dual regularization in a nonlinear mathematical programming”, Ch. 5, Advances Math. Res., 11, Nova Sci. Publ. Inc., New–York, 2010, 103–134

[16] Borwein J. M., Strojwas H. M., “Proximal analysis and boundaries of closed sets in banach space. Part I: Theory”, Can. J. Math., 38:2 (1986), 431–452 ; “Part II: Applications”, Can. J. Math., 39:2 (1987), 428–472 | DOI | MR | Zbl | DOI | Zbl

[17] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[18] Loewen P. D., Optimal control via nonsmooth analysis, CRM Proc. Lecture Notes, 2, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[19] Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R., Nonsmooth analysis and control theory, Graduate Texts in Mathematics, 178, Springer-Verlag, New York, 1998 | MR | Zbl

[20] Mordukhovich B. S., Variational analysis and generalized differentiation, v. I, Basic theory ; v. II, Applications, Springer-Verlag, Berlin, 2006 | MR

[21] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987 | MR | Zbl

[22] Sumin M. I., “Suboptimalnoe upravlenie sistemami s raspredelennymi parametrami: minimiziruyuschie posledovatelnosti, funktsiya znachenii”, Zh. vychisl. matem. i matem. fiz., 37:1 (1997), 23–41 | MR | Zbl

[23] Ekeland I., “On the variational principle”, J. Math. Anal. Appl., 47:2 (1974), 324–353 | DOI | MR | Zbl