Continuous first-order methods for monotone inclusions in a Hilbert space
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1241-1248
Voir la notice de l'article provenant de la source Math-Net.Ru
Equations in a Hilbert space that involve multivalued monotone mappings are examined. Solutions to such equations are understood in the inclusion sense. A continuous first-order method and its regularized version are constructed on the basis of the resolvent of the maximal monotone operator, and sufficient conditions for them to converge strongly are obtained.
@article{ZVMMF_2013_53_8_a2,
author = {I. P. Ryazantseva},
title = {Continuous first-order methods for monotone inclusions in a {Hilbert} space},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1241--1248},
publisher = {mathdoc},
volume = {53},
number = {8},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a2/}
}
TY - JOUR AU - I. P. Ryazantseva TI - Continuous first-order methods for monotone inclusions in a Hilbert space JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1241 EP - 1248 VL - 53 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a2/ LA - ru ID - ZVMMF_2013_53_8_a2 ER -
%0 Journal Article %A I. P. Ryazantseva %T Continuous first-order methods for monotone inclusions in a Hilbert space %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 1241-1248 %V 53 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a2/ %G ru %F ZVMMF_2013_53_8_a2
I. P. Ryazantseva. Continuous first-order methods for monotone inclusions in a Hilbert space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1241-1248. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a2/