Continuous first-order methods for monotone inclusions in a Hilbert space
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1241-1248

Voir la notice de l'article provenant de la source Math-Net.Ru

Equations in a Hilbert space that involve multivalued monotone mappings are examined. Solutions to such equations are understood in the inclusion sense. A continuous first-order method and its regularized version are constructed on the basis of the resolvent of the maximal monotone operator, and sufficient conditions for them to converge strongly are obtained.
@article{ZVMMF_2013_53_8_a2,
     author = {I. P. Ryazantseva},
     title = {Continuous first-order methods for monotone inclusions in a {Hilbert} space},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1241--1248},
     publisher = {mathdoc},
     volume = {53},
     number = {8},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a2/}
}
TY  - JOUR
AU  - I. P. Ryazantseva
TI  - Continuous first-order methods for monotone inclusions in a Hilbert space
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1241
EP  - 1248
VL  - 53
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a2/
LA  - ru
ID  - ZVMMF_2013_53_8_a2
ER  - 
%0 Journal Article
%A I. P. Ryazantseva
%T Continuous first-order methods for monotone inclusions in a Hilbert space
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1241-1248
%V 53
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a2/
%G ru
%F ZVMMF_2013_53_8_a2
I. P. Ryazantseva. Continuous first-order methods for monotone inclusions in a Hilbert space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1241-1248. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a2/