Rarefied gas flow through a pipe of variable square cross section into vacuum
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1402-1411 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The kinetic S-model is used to study the steady rarefied gas flow through a long pipe of variable cross section joining two tanks with arbitrary differences in pressure and temperature. The kinetic equation is solved numerically by applying a second-order accurate conservative method on an unstructured mesh. The basic quantity to be computed is the gas flow rate through the pipe. The possibility of finding a solution based on the assumption of the plane cross sectional flow is also explored. The resulting solutions are compared with previously known results.
@article{ZVMMF_2013_53_8_a14,
     author = {V. A. Titarev and S. V. Utyuzhnikov and E. M. Shakhov},
     title = {Rarefied gas flow through a pipe of variable square cross section into vacuum},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1402--1411},
     year = {2013},
     volume = {53},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a14/}
}
TY  - JOUR
AU  - V. A. Titarev
AU  - S. V. Utyuzhnikov
AU  - E. M. Shakhov
TI  - Rarefied gas flow through a pipe of variable square cross section into vacuum
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1402
EP  - 1411
VL  - 53
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a14/
LA  - ru
ID  - ZVMMF_2013_53_8_a14
ER  - 
%0 Journal Article
%A V. A. Titarev
%A S. V. Utyuzhnikov
%A E. M. Shakhov
%T Rarefied gas flow through a pipe of variable square cross section into vacuum
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1402-1411
%V 53
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a14/
%G ru
%F ZVMMF_2013_53_8_a14
V. A. Titarev; S. V. Utyuzhnikov; E. M. Shakhov. Rarefied gas flow through a pipe of variable square cross section into vacuum. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1402-1411. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a14/

[1] Sharipov F. M., Seleznev V. D., Dvizhenie razrezhennykh gazov v kanalakh i mikrokanalakh, UrO RAN, Ekaterinburg, 2008

[2] Varoutis S., Sazhin O., Valougeorgis D., Sharipov F., “Rarefied gas flow through short tubes into vacuum”, J. Vac. Sci. Technol., 26:1 (2008), 228–238

[3] Titarev V. A., “Efficient deterministic modelling of three-dimensional rarefied gas flows”, Commun. Comput. Phys., 12:1 (2012), 161–192 | MR

[4] Titarev V. A., “Rarefied gas flow in a planar channel caused by arbitrary pressure and temperature drops”, Int. J. of Heat and Mass Transfer., 55:21–22 (2012), 5916–5930 | DOI

[5] Titarev V. A., Shakhov E. M., “Computational study of a rarefied gas flow through a long circular pipe into vacuum”, Vacuum, 86:11, Special Issue “Vacuum Gas Dynamics: Theory, experiments and practical applications” (2012), 1709–1716 | DOI

[6] Sharipov F., “Benchmark problems in rarefied gas dynamics”, Vacuum, 86:11, Special Issue “Vacuum Gas Dynamics: Theory, experiments and practical applications” (2012), 1697–1700 | DOI

[7] Sharipov F., Bertoldo G., “Rarefied gas flow through a long tube of variable radius”, J. Vac. Sci. Technol. A, 23:3 (2005), 531–533 | DOI

[8] Shakhov E. M., “Ob obobschenii relaksatsionnogo kineticheskogo uravneniya Kruka”, Izv. AN SSSR. Mekhan. zhidk. i gaza, 1968, no. 5, 142–145

[9] Titarev V. A., “Neyavnyi chislennyi metod rascheta prostranstvennykh techenii razrezhennogo gaza na nestrukturirovannykh setkakh”, Zh. vychisl. matem. i matem. fiz., 50:10 (2010), 1811–1826 | MR | Zbl

[10] Koshmarov Yu. A., Ryzhov Yu. A., Prikladnaya dinamika razrezhennogo gaza, Mashinostroenie, M., 1977

[11] Titarev V. A., “Conservative numerical methods for model kinetic equations”, Computers and Fluids, 36:9 (2007), 1446–1459 | DOI | MR | Zbl

[12] Men'shov I. S., Nakamura Y., “On implicit Godunov's method with exactly linearized numerical flux”, Computers and Fluids, 29:6 (2000), 595–616 | DOI

[13] Aristov V. V., Zabelok S. A., “Deterministicheskii metod resheniya uravneniya Boltsmana s parallelnymi vychisleniyami”, Zh. vychisl. matem. i matem. fiz., 42:3 (2002), 425–437 | MR | Zbl

[14] Kloss Yu. Yu., Martinov D. V., Cheremisin F. G., “Kompyuternoe modelirovanie i analiz nasosa Kholveka v perekhodnom rezhime”, Zh. tekhn. fiziki, 82:4 (2012), 31–36

[15] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh techenii gazovoi dinamiki”, Uchen. zap. TsAGI, 3:6 (1972), 68–77

[16] Venkatakrishnan V., “On the accuracy of limiters and convergence to steady-state solutions”, 31st Aerospace Science Meeting Exhibit (January 11–14, 1993, Reno, NV); AIAA paper 93-0880, 1993 | Zbl

[17] Petrovskaya N. B., Volkhov A. V., “Vliyanie geometrii setki na tochnost rekonstruktsii resheniya v konechno-ob'emnykh i konechno-elementnykh skhemakh vysokogo poryadka”, Matem. modelirovanie, 22:3 (2010), 145–160 | MR | Zbl

[18] van Leer V., “Towards the ultimate conservative difference scheme V: a second order sequel to Godunov' method”, J. Comput. Phys., 32 (1979), 101–136 | DOI | MR