Adaptation and optimization of basic operations for an unstructured mesh CFD algorithm for computation on massively parallel accelerators
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1360-1373
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The design of efficient algorithms for large-scale gas dynamics computations with hybrid (heterogeneous) computing systems whose high performance relies on massively parallel accelerators is addressed. A high-order accurate finite volume algorithm with polynomial reconstruction on unstructured hybrid meshes is used to compute compressible gas flows in domains of complex geometry. The basic operations of the algorithm are implemented in detail for massively parallel accelerators, including AMD and NVIDIA graphics processing units (GPUs). Major optimization approaches and a computation transfer technique are covered. The underlying programming tool is the Open Computing Language (OpenCL) standard, which performs on accelerators of various architectures, both existing and emerging.
@article{ZVMMF_2013_53_8_a11,
     author = {P. B. Bogdanov and A. V. Gorobets and S. A. Sukov},
     title = {Adaptation and optimization of basic operations for an unstructured mesh {CFD} algorithm for computation on massively parallel accelerators},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1360--1373},
     year = {2013},
     volume = {53},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a11/}
}
TY  - JOUR
AU  - P. B. Bogdanov
AU  - A. V. Gorobets
AU  - S. A. Sukov
TI  - Adaptation and optimization of basic operations for an unstructured mesh CFD algorithm for computation on massively parallel accelerators
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1360
EP  - 1373
VL  - 53
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a11/
LA  - ru
ID  - ZVMMF_2013_53_8_a11
ER  - 
%0 Journal Article
%A P. B. Bogdanov
%A A. V. Gorobets
%A S. A. Sukov
%T Adaptation and optimization of basic operations for an unstructured mesh CFD algorithm for computation on massively parallel accelerators
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1360-1373
%V 53
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a11/
%G ru
%F ZVMMF_2013_53_8_a11
P. B. Bogdanov; A. V. Gorobets; S. A. Sukov. Adaptation and optimization of basic operations for an unstructured mesh CFD algorithm for computation on massively parallel accelerators. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1360-1373. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a11/

[1] Monakov A., Lokmotov A., Avetisyan A., “Automatically tuning sparse matrix-vector multiplication for GPU architectures, high performance embedded architectures and compilers”, Lecture Notes in Comput. Sci., 5952, 2010, 111–125 | DOI

[2] Bell N., Garland M., Efficient sparse matrix-vector multiplication on CUDA, Technical Report NVR-2008-004, NVIDIA, 2008

[3] Garland M., Le Grand S., Nickolls J., Anderson J. et al., “Parallel computing experiences with cuda”, Micro, IEEE, 28:4 (2008), 13–27 | DOI

[4] Habich J., Feichtinger C., Köstler H., Hager G. et al., “Performance engineering for the lattice Boltzmann method on GPGPUs: architectural requirements and performance results”, Computers and Fluids, 80 (2013), 276–282 | DOI

[5] Obrecth C., Kuznik F., Tourancheau B., Roux J.-J., “The TheLMA project: a thermal lattice Boltzmann solver for the GPU”, Computers and Fluids, 54 (2012), 118–126 | DOI | MR

[6] Rinaldi P. R., Dari E. A., Vénere M. J., Clausse A., “A Lattice-Boltzmann solver for 3D fluid simulation on GPU”, Simulation Modelling Practice and Theory, 25 (2012), 163–171 | DOI

[7] Zaspe P., Griebel M., “Solving incompressible two-phase flows on multi-GPU clusters”, Computers and Fluids, 80 (2013), 356–364 | DOI

[8] Koromyslov E. V., Siner A. A., Usanin M. V., “Raschet na videokartakh generatsii zvuka reaktivnoi struei pri istechenii iz modelnogo sopla”, Vychislitelnyi eksperiment v aeroakustike, 4-ya vserossiiskaya konferentsiya (19–22 sentyabrya 2012 goda, g. Svetlogorsk), izd-vo MAKS press, M., 2012

[9] Barth T., Numerical methods for conservation laws on structured and unstructured meshes, VKI for Fluid Dynamics. Lectures series, 2003-03

[10] Roe P. L., “Approximate Riemann solvers, parameter vectors and difference schemes”, J. Comput. Phys., 43:21 (1981), 357–372 | DOI | MR | Zbl

[11] Abalakin I. V., Bakhvalov P. A., Gorobets A. V., Duben A. P. i dr., “Parallelnyi programmnyi kompleks NOISETTE dlya krupnomasshtabnykh raschetov zadach aerodinamiki i aeroakustiki”, Vychisl. metody i programmirovanie, 13 (2012), 110–125

[12] Gorobets A. V., Sukov S. A., Zheleznyakov A. O., Bogdanov P. B. i dr., “Primenenie GPU v ramkakh gibridnogo dvukhurovnevogo rasparallelivaniya MPI+OpenMP na geterogennykh vychislitelnykh sistemakh”, Vestnik YuUrGU, 2011, no. 25 (242), 76–86

[13] OpenMP Application Program Interface. Version 3.1, , July 2011 www.openmp.org/mp-documents/OpenMP3.1.pdf

[14] Khronos OpenCL Working Group. The OpenCL Specification, Version 1.1, , 2010 http://www.khronos.org/registry/cl/specs/openc-1.1.pdf

[15] Efremov A., Bogdanov P., “OpenCL mathematical software infrastructure for heterogeneous computing”, Parallel CFD 2012, Book of abstracts (May 21–25, 2012, Atlanta, USA), v. 4, 18–19