@article{ZVMMF_2013_53_8_a1,
author = {V. A. Abilov and M. V. Abilov and M. K. Kerimov},
title = {Convergence rate estimates for {\textquotedblleft}spherical{\textquotedblright} partial sums of double {Fourier} series},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1233--1240},
year = {2013},
volume = {53},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a1/}
}
TY - JOUR AU - V. A. Abilov AU - M. V. Abilov AU - M. K. Kerimov TI - Convergence rate estimates for “spherical” partial sums of double Fourier series JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1233 EP - 1240 VL - 53 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a1/ LA - ru ID - ZVMMF_2013_53_8_a1 ER -
%0 Journal Article %A V. A. Abilov %A M. V. Abilov %A M. K. Kerimov %T Convergence rate estimates for “spherical” partial sums of double Fourier series %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 1233-1240 %V 53 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a1/ %G ru %F ZVMMF_2013_53_8_a1
V. A. Abilov; M. V. Abilov; M. K. Kerimov. Convergence rate estimates for “spherical” partial sums of double Fourier series. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1233-1240. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a1/
[1] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR
[2] Abilov V. A., “On the convergence of multiple Fourier series and quadrature formulae”, Math. Balkanica. New Series, 16 (2002), 73–94 | MR | Zbl
[3] Abilov V. A., Abilova F. V., “Nekotorye voprosy priblizheniya $2\pi$-periodicheskikh funktsii summami Fure v prostranstve $\mathbb{L}_2(2\pi)$”, Matem. zametki, 76:6 (2004), 803–811 | DOI | MR | Zbl
[4] Vakarchuk S. B., Zabutnaya V. I., “Tochnoe neravenstvo tipa Dzheksona–Stechkina v $\mathbb{L}_2$ i poperechnik funktsionalnykh klassov”, Matem. zametki, 86:3 (2009), 328–336 | DOI | MR | Zbl
[5] Geng Aicheng, Liu Yongping, “Kolmogorov n-width of some special classes of functions in $\mathbb{L}_2$”, J. Beijing Normal University (Natural Sci.), 43:5 (2007), 496–500 | MR | Zbl