Convergence rate estimates for “spherical” partial sums of double Fourier series
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1233-1240 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The convergence of Fourier double series of $2\pi$-periodic functions from the space $\mathbb{L}_2$ is analyzed. The convergence rate of spherical partial sums of a double Fourier series is estimated for some classes of functions characterized by a generalized modulus of continuity.
@article{ZVMMF_2013_53_8_a1,
     author = {V. A. Abilov and M. V. Abilov and M. K. Kerimov},
     title = {Convergence rate estimates for {\textquotedblleft}spherical{\textquotedblright} partial sums of double {Fourier} series},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1233--1240},
     year = {2013},
     volume = {53},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a1/}
}
TY  - JOUR
AU  - V. A. Abilov
AU  - M. V. Abilov
AU  - M. K. Kerimov
TI  - Convergence rate estimates for “spherical” partial sums of double Fourier series
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1233
EP  - 1240
VL  - 53
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a1/
LA  - ru
ID  - ZVMMF_2013_53_8_a1
ER  - 
%0 Journal Article
%A V. A. Abilov
%A M. V. Abilov
%A M. K. Kerimov
%T Convergence rate estimates for “spherical” partial sums of double Fourier series
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1233-1240
%V 53
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a1/
%G ru
%F ZVMMF_2013_53_8_a1
V. A. Abilov; M. V. Abilov; M. K. Kerimov. Convergence rate estimates for “spherical” partial sums of double Fourier series. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1233-1240. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a1/

[1] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[2] Abilov V. A., “On the convergence of multiple Fourier series and quadrature formulae”, Math. Balkanica. New Series, 16 (2002), 73–94 | MR | Zbl

[3] Abilov V. A., Abilova F. V., “Nekotorye voprosy priblizheniya $2\pi$-periodicheskikh funktsii summami Fure v prostranstve $\mathbb{L}_2(2\pi)$”, Matem. zametki, 76:6 (2004), 803–811 | DOI | MR | Zbl

[4] Vakarchuk S. B., Zabutnaya V. I., “Tochnoe neravenstvo tipa Dzheksona–Stechkina v $\mathbb{L}_2$ i poperechnik funktsionalnykh klassov”, Matem. zametki, 86:3 (2009), 328–336 | DOI | MR | Zbl

[5] Geng Aicheng, Liu Yongping, “Kolmogorov n-width of some special classes of functions in $\mathbb{L}_2$”, J. Beijing Normal University (Natural Sci.), 43:5 (2007), 496–500 | MR | Zbl