Convergence rate estimates for “spherical” partial sums of double Fourier series
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1233-1240
Voir la notice de l'article provenant de la source Math-Net.Ru
The convergence of Fourier double series of $2\pi$-periodic functions from the space $\mathbb{L}_2$ is analyzed. The convergence rate of spherical partial sums of a double Fourier series is estimated for some classes of functions characterized by a generalized modulus of continuity.
@article{ZVMMF_2013_53_8_a1,
author = {V. A. Abilov and M. V. Abilov and M. K. Kerimov},
title = {Convergence rate estimates for {\textquotedblleft}spherical{\textquotedblright} partial sums of double {Fourier} series},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1233--1240},
publisher = {mathdoc},
volume = {53},
number = {8},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a1/}
}
TY - JOUR AU - V. A. Abilov AU - M. V. Abilov AU - M. K. Kerimov TI - Convergence rate estimates for “spherical” partial sums of double Fourier series JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1233 EP - 1240 VL - 53 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a1/ LA - ru ID - ZVMMF_2013_53_8_a1 ER -
%0 Journal Article %A V. A. Abilov %A M. V. Abilov %A M. K. Kerimov %T Convergence rate estimates for “spherical” partial sums of double Fourier series %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 1233-1240 %V 53 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a1/ %G ru %F ZVMMF_2013_53_8_a1
V. A. Abilov; M. V. Abilov; M. K. Kerimov. Convergence rate estimates for “spherical” partial sums of double Fourier series. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 8, pp. 1233-1240. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_8_a1/