Mathematical simulation of acoustic wave refraction near a caustic
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1124-1138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Issues related to the computation of wave fields in an acoustic medium near caustics are considered. A boundary condition on a caustic is established, and the Green’s function of a boundary value problem for the general case of a varying speed of sound is constructed. For this purpose, an auxiliary Goursat problem is considered and a system of its particular solutions is constructed using hypergeometric functions. A Volterra integral equation for the Green’s function is obtained, and an algorithm for its expansion with respect to smoothness is described. A finite difference scheme approximating the solution of the differential problem with an unbounded coefficient is proposed. Numerical results are presented.
@article{ZVMMF_2013_53_7_a8,
     author = {A. V. Baev},
     title = {Mathematical simulation of acoustic wave refraction near a caustic},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1124--1138},
     year = {2013},
     volume = {53},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a8/}
}
TY  - JOUR
AU  - A. V. Baev
TI  - Mathematical simulation of acoustic wave refraction near a caustic
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1124
EP  - 1138
VL  - 53
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a8/
LA  - ru
ID  - ZVMMF_2013_53_7_a8
ER  - 
%0 Journal Article
%A A. V. Baev
%T Mathematical simulation of acoustic wave refraction near a caustic
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1124-1138
%V 53
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a8/
%G ru
%F ZVMMF_2013_53_7_a8
A. V. Baev. Mathematical simulation of acoustic wave refraction near a caustic. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1124-1138. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a8/

[1] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1988

[2] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972

[3] Goldin S. V., Duchkov A. A., “Seismicheskoe volnovoe pole vblizi kaustik: analiz vo vremennoi oblasti”, Fizika Zemli, 2002, no. 7, 56–66

[4] Yanovskaya T. B., Geiger M. A., “Chislennyi metod rascheta polya poverkhnostnoi volny pri nalichii kaustik”, Fizika Zemli, 2007, no. 8, 35–43

[5] Belishev M. I., Blagoveschenskii A. S., Dinamicheskie obratnye zadachi teorii voln, Izd-vo S.-Peterburgskogo universiteta, SPb., 1999

[6] Baev A. V., Kutsenko N. V., “Reshenie zadachi vosstanovleniya koeffitsienta dissipatsii variatsionnym metodom”, Zh. vychisl. matem. i matem. fiz., 46:10 (2006), 1882–1893

[7] Nikiforov A. F., Uvarov V. B., Osnovy teorii spetsialnykh funktsii, Nauka, M., 1974

[8] Baev A. V., “Ob odnom metode resheniya obratnoi zadachi rasseyaniya dlya volnovogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 28:1 (1988), 25–33 | Zbl

[9] S. K. Godunov (red.), Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | Zbl