@article{ZVMMF_2013_53_7_a5,
author = {Safar Irandoust-pakchin and Hossein Kheiri and Somayeh Abdi-mazraeh},
title = {Efficient computational algorithms for solving one class of fractional boundary value problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1107},
year = {2013},
volume = {53},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a5/}
}
TY - JOUR AU - Safar Irandoust-pakchin AU - Hossein Kheiri AU - Somayeh Abdi-mazraeh TI - Efficient computational algorithms for solving one class of fractional boundary value problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1107 VL - 53 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a5/ LA - en ID - ZVMMF_2013_53_7_a5 ER -
%0 Journal Article %A Safar Irandoust-pakchin %A Hossein Kheiri %A Somayeh Abdi-mazraeh %T Efficient computational algorithms for solving one class of fractional boundary value problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 1107 %V 53 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a5/ %G en %F ZVMMF_2013_53_7_a5
Safar Irandoust-pakchin; Hossein Kheiri; Somayeh Abdi-mazraeh. Efficient computational algorithms for solving one class of fractional boundary value problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a5/
[1] Q. M. Al-mdallal, M. I. Syam, M. N. Anwar, “A collocation-shooting method for solving fractional boundary value problems”, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 3814–3822 | DOI | Zbl
[2] L. Blank, Numerical treatment of differential equations of fractional order, Numerical Analysis Report, No 287, Manchester Center for Numerical Computational Mathematics, 1996
[3] Y. Censiz, Y. Keskin, A. Kurnaz, “The solution of Bagley–Torvik equation with the generalized Taylor collocation method”, J. Franklin Inst., 347 (2010), 452–466 | DOI
[4] E. A. Rawashdeh, “Numerical solution of fractional integro-differential equations by collocation method”, Nonlinear Sci. Numer. Simul., 14 (2009), 674–684 | DOI
[5] M. Li, S. Jiménez, N. Nie, Y. Tang, L. Vázquez, Solving two-point boundary value problems of fractional differential equations by spline collocation methods, , 2009, 10 pp. http://www.cc.ac.cn/2009research_report/0903.pdf
[6] V. Daftardax-geiji, H. Jafari, “A domain decomposition: A tool for solving a system of fractional differential equations”, J. Math. Anal. Appl., 301 (2005), 508–518 | DOI
[7] E. Wakili, S. Elhambaly, A. Abdou, “A domain decomposition for solving a system of fractional nonlinear differential equations”, Appl. Math. Comput., 182 (2006), 313–324 | DOI
[8] M. M. Meerschaert, “Finite difference approximations for two-sided space-fractional partial differential equations”, Appl. Numer. Math., 56 (2006), 80–90 | DOI | Zbl
[9] C. Tadjeran, M. M. Meerschaert, “A second-order accurate numerical method for the two-dimensional fractional diffusion equation”, J. Comput. Phys., 220 (2007), 813–823 | DOI | Zbl
[10] M. Lakestani, M. Dehghan, S. Irandoust-pakchin, “The construction of operational matrix of fractional derivatives using $B$-spline functions”, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1149–1162 | DOI | Zbl
[11] V. E. Lynch, B. A. Carreras, D. Del-Castillo-Negrete, K. M. Ferriera-Mejias, H. R. Hicks, “Numerical methods for the solution of partial differential equations of fractional order”, J. Comput. Phys., 192 (2003), 406–421 | DOI | Zbl
[12] Y. Babenko, “Noninteger differential equation in engineering”, Conference (Bordeaux, July 3–8, 1994)
[13] H. Beyer, S. Kempfle, “Definition of physically consistent damping laws with fractional derivatives”, Z. Anqew. Math. Mech., 75 (1995), 623–635 | DOI | Zbl
[14] F. Mainardi, “Fractional relaxation and fractional diffusion equations mathematical aspects”, Proceedings of the 14th IMACS World Congress (Georgia Tech. Atlanta, 1994), v. 1, 329–332
[15] M. Michalski, “Derivatives of noninteger order and their applications”, Dissertationes Mathematicae, 328 (1993), 1–47
[16] M. Ochmann, S. Makarov, “Representation of the absorption of nonlinear waves by fractional derivatives”, J. Acoust. Soc. Am., 94:6 (1993), 2–9 | DOI
[17] Z. Shuqin, “Existence of solution for a boundary value problem of fractional order”, Acta Math. Sci., 26:2, April (2006), 220–228 | Zbl
[18] V. Daftardar-Geiji, H. Jafari, “Analysis of a system of nonautonomous fractional equations involving Caputo derivatives”, J. Math. Anal. Appl., 328 (2007), 26–33
[19] I. Podlubny, Fractional Differential Equations, Academic, San Diego, 1999 | Zbl
[20] V. Lakshmikantham, “Theory of fractional functional differential equations”, Nonlinear Anal. Theory Meth. Appl., 69 (2008), 3337–3343 | DOI | Zbl
[21] V. Lakshmikantham, A. Vatsala, “General uniqueness and monotone iterative technique for fractional differential equations”, Appl. Math. Lett., 21 (2008), 828–834 | DOI | Zbl
[22] Z. Odibat, S. Momani, H. Xu, “A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations”, Appl. Math. Model., 34 (2010), 593–600 | DOI | Zbl
[23] Z. Odibat, S. Momani, “Application of variational iteration method to nonlinear differential equations of fractional order”, Int. J. Nonlin. Sci. Numer. Simul., 7:1 (2006), 27–34 | DOI
[24] M. A. Noor, S. T. Mohyud-Din, “Modified Variational iteration method for solving fourth-order boundary value problems”, J. Appl. Math. Comput., 29 (2009), 81–94 | DOI | Zbl
[25] M. A. Noor, S. T. Mohyud-Din, “Modified Variational iteration method for solving the Helmholtz equations”, Comput. Math. Model., 20:1 (2009), 40–50 | DOI | Zbl
[26] X. Su, “Boundary value problems for a coupled system of nonlinear fractional differential equations”, Appl. Math. Lett., 22:6 (2009), 4–9
[27] S. J. Liao, The proposed homotopy analysis techniques for the solution of nonlinear problems, Ph. D. Dissertation, Shanghai Jiao Tong University, 1992
[28] V. Marinca, N. Herisanu, I. Nemes, “Optimal homotopy asymptotic method with application to thin film flow”, Cent. Eur. J. Phys., 6 (2008), 648–653 | DOI
[29] V. Marinca, N. Herisanu, “An optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer”, Int. Comm. Heat Mass Transfer, 35 (2008), 710–715 | DOI
[30] V. Marinca, N. Herisanu, C. Bota, B. Marinca, “An optimal homotopy asymptotic method applied to the steady flow of fourth-grade fluid past a porous plate”, Appl. Math. Lett., 22 (2009), 245–251 | DOI | Zbl
[31] A. Carpinteri, F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien, 1997 | Zbl
[32] A. Ghorbani, J. Saberi-Nadjafi, “An effective modification of He's variational iteration method”, Nonlinear Anal. Real World Appl., 10 (2009), 2828–2833 | DOI | Zbl
[33] F. Mainardi, “Fractional calculus: Some basic problems in continuum and statistical mechanics”, Fractals and Fractional Calculus in Continuum Mechanics, ed. A. Carpinteri, F. Mainardi, Springer, New York, 1997, 291–348
[34] J. H. He, “A new approach to linear partial differential equations”, Commun. Nonlinear Sci. Numer. Simul., 2 (1997), 230–235 | DOI | Zbl
[35] J. H. He, “Some applications of nonlinear fractional differential equation and their approximations”, Bull. Sci. Technol., 15:12 (1999), 86–90
[36] J. H. He, “Variational iteration method for delay differential equations”, Commun. Nonlinear Sci. Numer. Simul., 2:4 (1997), 235–236 | DOI
[37] L. Xu, “Variational iteration method for solving integral equations”, Comput. Math. Appl., 54 (2007), 1071–1078 | DOI | Zbl
[38] R. Y. Molliq, M. S. M. Noorani, I. Hashim, “Variational iteration method for fractional heat- and wavelike equations”, Nonlinear Anal. Real World Appl., 10 (2009), 1854–1869 | DOI | Zbl
[39] S. Irandoust, A. Golbabai, H. Kheiri, D. Ahmadian, “Homotopy analysis method for solving ratio-dependent predator-prey system with constant effort harvesting by using two parameters $h_1$ and $h_2$”, Acta Univ. Apulensis, 25 (2011), 327–340 | Zbl