Efficient computational algorithms for solving one class of fractional boundary value problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we introduce a modification of He’s variational iteration, homotopy analysis and optimal homotopy analysis methods for solving fractional boundary value problems. It is illustrated that the proposed methods are powerful fast numerical tools to find accurate solutions. It is illustrated that efficiency of these methods is based on proper choosing of initial guess.
@article{ZVMMF_2013_53_7_a5,
     author = {Safar Irandoust-pakchin and Hossein Kheiri and Somayeh Abdi-mazraeh},
     title = {Efficient computational algorithms for solving one class of fractional boundary value problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1107},
     year = {2013},
     volume = {53},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a5/}
}
TY  - JOUR
AU  - Safar Irandoust-pakchin
AU  - Hossein Kheiri
AU  - Somayeh Abdi-mazraeh
TI  - Efficient computational algorithms for solving one class of fractional boundary value problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1107
VL  - 53
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a5/
LA  - en
ID  - ZVMMF_2013_53_7_a5
ER  - 
%0 Journal Article
%A Safar Irandoust-pakchin
%A Hossein Kheiri
%A Somayeh Abdi-mazraeh
%T Efficient computational algorithms for solving one class of fractional boundary value problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1107
%V 53
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a5/
%G en
%F ZVMMF_2013_53_7_a5
Safar Irandoust-pakchin; Hossein Kheiri; Somayeh Abdi-mazraeh. Efficient computational algorithms for solving one class of fractional boundary value problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a5/

[1] Q. M. Al-mdallal, M. I. Syam, M. N. Anwar, “A collocation-shooting method for solving fractional boundary value problems”, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 3814–3822 | DOI | Zbl

[2] L. Blank, Numerical treatment of differential equations of fractional order, Numerical Analysis Report, No 287, Manchester Center for Numerical Computational Mathematics, 1996

[3] Y. Censiz, Y. Keskin, A. Kurnaz, “The solution of Bagley–Torvik equation with the generalized Taylor collocation method”, J. Franklin Inst., 347 (2010), 452–466 | DOI

[4] E. A. Rawashdeh, “Numerical solution of fractional integro-differential equations by collocation method”, Nonlinear Sci. Numer. Simul., 14 (2009), 674–684 | DOI

[5] M. Li, S. Jiménez, N. Nie, Y. Tang, L. Vázquez, Solving two-point boundary value problems of fractional differential equations by spline collocation methods, , 2009, 10 pp. http://www.cc.ac.cn/2009research_report/0903.pdf

[6] V. Daftardax-geiji, H. Jafari, “A domain decomposition: A tool for solving a system of fractional differential equations”, J. Math. Anal. Appl., 301 (2005), 508–518 | DOI

[7] E. Wakili, S. Elhambaly, A. Abdou, “A domain decomposition for solving a system of fractional nonlinear differential equations”, Appl. Math. Comput., 182 (2006), 313–324 | DOI

[8] M. M. Meerschaert, “Finite difference approximations for two-sided space-fractional partial differential equations”, Appl. Numer. Math., 56 (2006), 80–90 | DOI | Zbl

[9] C. Tadjeran, M. M. Meerschaert, “A second-order accurate numerical method for the two-dimensional fractional diffusion equation”, J. Comput. Phys., 220 (2007), 813–823 | DOI | Zbl

[10] M. Lakestani, M. Dehghan, S. Irandoust-pakchin, “The construction of operational matrix of fractional derivatives using $B$-spline functions”, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1149–1162 | DOI | Zbl

[11] V. E. Lynch, B. A. Carreras, D. Del-Castillo-Negrete, K. M. Ferriera-Mejias, H. R. Hicks, “Numerical methods for the solution of partial differential equations of fractional order”, J. Comput. Phys., 192 (2003), 406–421 | DOI | Zbl

[12] Y. Babenko, “Noninteger differential equation in engineering”, Conference (Bordeaux, July 3–8, 1994)

[13] H. Beyer, S. Kempfle, “Definition of physically consistent damping laws with fractional derivatives”, Z. Anqew. Math. Mech., 75 (1995), 623–635 | DOI | Zbl

[14] F. Mainardi, “Fractional relaxation and fractional diffusion equations mathematical aspects”, Proceedings of the 14th IMACS World Congress (Georgia Tech. Atlanta, 1994), v. 1, 329–332

[15] M. Michalski, “Derivatives of noninteger order and their applications”, Dissertationes Mathematicae, 328 (1993), 1–47

[16] M. Ochmann, S. Makarov, “Representation of the absorption of nonlinear waves by fractional derivatives”, J. Acoust. Soc. Am., 94:6 (1993), 2–9 | DOI

[17] Z. Shuqin, “Existence of solution for a boundary value problem of fractional order”, Acta Math. Sci., 26:2, April (2006), 220–228 | Zbl

[18] V. Daftardar-Geiji, H. Jafari, “Analysis of a system of nonautonomous fractional equations involving Caputo derivatives”, J. Math. Anal. Appl., 328 (2007), 26–33

[19] I. Podlubny, Fractional Differential Equations, Academic, San Diego, 1999 | Zbl

[20] V. Lakshmikantham, “Theory of fractional functional differential equations”, Nonlinear Anal. Theory Meth. Appl., 69 (2008), 3337–3343 | DOI | Zbl

[21] V. Lakshmikantham, A. Vatsala, “General uniqueness and monotone iterative technique for fractional differential equations”, Appl. Math. Lett., 21 (2008), 828–834 | DOI | Zbl

[22] Z. Odibat, S. Momani, H. Xu, “A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations”, Appl. Math. Model., 34 (2010), 593–600 | DOI | Zbl

[23] Z. Odibat, S. Momani, “Application of variational iteration method to nonlinear differential equations of fractional order”, Int. J. Nonlin. Sci. Numer. Simul., 7:1 (2006), 27–34 | DOI

[24] M. A. Noor, S. T. Mohyud-Din, “Modified Variational iteration method for solving fourth-order boundary value problems”, J. Appl. Math. Comput., 29 (2009), 81–94 | DOI | Zbl

[25] M. A. Noor, S. T. Mohyud-Din, “Modified Variational iteration method for solving the Helmholtz equations”, Comput. Math. Model., 20:1 (2009), 40–50 | DOI | Zbl

[26] X. Su, “Boundary value problems for a coupled system of nonlinear fractional differential equations”, Appl. Math. Lett., 22:6 (2009), 4–9

[27] S. J. Liao, The proposed homotopy analysis techniques for the solution of nonlinear problems, Ph. D. Dissertation, Shanghai Jiao Tong University, 1992

[28] V. Marinca, N. Herisanu, I. Nemes, “Optimal homotopy asymptotic method with application to thin film flow”, Cent. Eur. J. Phys., 6 (2008), 648–653 | DOI

[29] V. Marinca, N. Herisanu, “An optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer”, Int. Comm. Heat Mass Transfer, 35 (2008), 710–715 | DOI

[30] V. Marinca, N. Herisanu, C. Bota, B. Marinca, “An optimal homotopy asymptotic method applied to the steady flow of fourth-grade fluid past a porous plate”, Appl. Math. Lett., 22 (2009), 245–251 | DOI | Zbl

[31] A. Carpinteri, F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien, 1997 | Zbl

[32] A. Ghorbani, J. Saberi-Nadjafi, “An effective modification of He's variational iteration method”, Nonlinear Anal. Real World Appl., 10 (2009), 2828–2833 | DOI | Zbl

[33] F. Mainardi, “Fractional calculus: Some basic problems in continuum and statistical mechanics”, Fractals and Fractional Calculus in Continuum Mechanics, ed. A. Carpinteri, F. Mainardi, Springer, New York, 1997, 291–348

[34] J. H. He, “A new approach to linear partial differential equations”, Commun. Nonlinear Sci. Numer. Simul., 2 (1997), 230–235 | DOI | Zbl

[35] J. H. He, “Some applications of nonlinear fractional differential equation and their approximations”, Bull. Sci. Technol., 15:12 (1999), 86–90

[36] J. H. He, “Variational iteration method for delay differential equations”, Commun. Nonlinear Sci. Numer. Simul., 2:4 (1997), 235–236 | DOI

[37] L. Xu, “Variational iteration method for solving integral equations”, Comput. Math. Appl., 54 (2007), 1071–1078 | DOI | Zbl

[38] R. Y. Molliq, M. S. M. Noorani, I. Hashim, “Variational iteration method for fractional heat- and wavelike equations”, Nonlinear Anal. Real World Appl., 10 (2009), 1854–1869 | DOI | Zbl

[39] S. Irandoust, A. Golbabai, H. Kheiri, D. Ahmadian, “Homotopy analysis method for solving ratio-dependent predator-prey system with constant effort harvesting by using two parameters $h_1$ and $h_2$”, Acta Univ. Apulensis, 25 (2011), 327–340 | Zbl