Discretization of solutions to Poisson’s equation in the Korobov class
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1082-1093 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A sharp discretization error estimate on the power scale is obtained for the solution of Poisson’s equation with a right-hand side from the Korobov class with the application of Smolyak grid nodes. In some cases, the results coincide in the order of the upper error estimate with earlier results of other authors, but the discretization operator proposed is simpler.
@article{ZVMMF_2013_53_7_a3,
     author = {S. S. Kudaibergenov and S. G. Sabitova},
     title = {Discretization of solutions to {Poisson{\textquoteright}s} equation in the {Korobov} class},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1082--1093},
     year = {2013},
     volume = {53},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a3/}
}
TY  - JOUR
AU  - S. S. Kudaibergenov
AU  - S. G. Sabitova
TI  - Discretization of solutions to Poisson’s equation in the Korobov class
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1082
EP  - 1093
VL  - 53
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a3/
LA  - ru
ID  - ZVMMF_2013_53_7_a3
ER  - 
%0 Journal Article
%A S. S. Kudaibergenov
%A S. G. Sabitova
%T Discretization of solutions to Poisson’s equation in the Korobov class
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1082-1093
%V 53
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a3/
%G ru
%F ZVMMF_2013_53_7_a3
S. S. Kudaibergenov; S. G. Sabitova. Discretization of solutions to Poisson’s equation in the Korobov class. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1082-1093. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a3/

[1] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963 ; Издание второе, переработанное и дополненное, МЦНМО, М., 2004 | Zbl

[2] Bailov E. A., Temirgaliev N., “O diskretizatsii reshenii uravneniya Puassona”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1594–1604

[3] Sherniyazov K. E., “Vosstanovlenie funktsii i reshenii uravneniya teploprovodnosti s raspredeleniyami nachalnykh temperatur iz klassov $E$, $SW$ i $SH$”, Vestn. KazGU. Ser. matem., mekhan., inf., 1998, no. 11, 98–108

[4] Sherniyazov K. E., Priblizhennoe vosstanovlenie funktsii i reshenii uravneniya teploprovodnosti s funktsiyami raspredeleniya nachalnykh temperatur iz klassov $E$, $SW$, Diss. ... kand. fiz.-matem. nauk po spets. 01.01.01 — matem. analiz, Almaty, 1998

[5] Temirgaliev N., “Ob optimalnom vosstanovlenii reshenii klassicheskikh uravnenii matematicheskoi fiziki”, I s'ezd matematikov Kazakhstana, Tezisy dokl. (Shymkent, 1996), 151–153

[6] Temirgaliev N., “Teoretiko-chislovye metody i teoretiko-veroyatnostnyi podkhod k zadacham analiza. Teoriya vlozhenii i priblizhenii, absolyutnaya skhodimost i preobrazovanie ryadov Fure”, Vestn. Evraziiskogo un-ta, 1997, no. 3, 90–144

[7] Temirgaliev N., “Kompyuternyi (vychislitelnyi) poperechnik. Algebraicheskaya teoriya chisel i garmonicheskii analiz v zadachakh vosstanovleniya (metod kvazi-Monte Karlo). Teoriya vlozhenii i priblizhenii. Ryady Fure”, Vestn. Evraziiskogo nats. un-ta, 2010, Spets. vypusk, posvyaschennyi nauchnym dostizheniyam matematikov ENU im. L. N. Gumileva, 1–194

[8] Temirgaliev N., Nepreryvnaya i diskretnaya matematika v organicheskom edinstve v kontekste napravlenii issledovanii, Elektronnoe izdanie, In-t teor. matem. i nauchnykh vychisl. Evraziiskii nats. un-t, Astana, 2012, 256 pp.

[9] Hua Loo Keng, Wang Yuan, Application of number theory of numerical analysis, Springer, New York, 1981

[10] Zhileikin Ya. M., “O priblizhennom reshenii zadachi Dirikhle dlya uravneniya Laplasa”, Dokl. AN SSSR, 155:5 (1964), 999–1002

[11] Bakhvalov N. S., “O chislennom reshenii zadachi Dirikhle dlya uravneniya Laplasa”, Vestn. MGU, 1959, no. 5, 171–195

[12] Bailov E. A., Priblizhennoe integrirovanie i vosstanovlenie funktsii iz anizotropnykh klassov i vosstanovlenie reshenii uravneniya Puassona, Diss. ... kand. fiz.-matem. nauk po spets. 01.01.01. — matem. analiz, Almaty, 1998

[13] Smolyak S. A., “Kvadraturnye i interpolyatsionnye formuly na tenzornykh proizvedeniyakh nekotorykh klassov funktsii”, Dokl. AN SSSR, 148:5 (1963), 1042–1045 | Zbl

[14] Naurizbayev N., Temirgaliyev N., “An exact order of discrepancy of the Smolyak grid and some general conclusions in the theory of numerical integration”, Found. Comput. Math., 12 (2012), 139–172 | DOI

[15] Temirgaliev N., “Klassy $U_s(\beta,\theta,\alpha;\psi)$ i kvadraturnye formuly”, Dokl. AN, 393:5 (2003), 605–608

[16] Temirgaliev N., Kudaibergenov S. S., Shomanova A. A., “Primenenie tenzornykh proizvedenii funktsionalov v zadachakh chislennogo integrirovaniya”, Izv. RAN. Ser. matem., 73:2 (2009), 183–224 | DOI | Zbl

[17] Temirgaliev N., Kudaibergenov S. S., Shomanova A. A., “Primeneniya kvadraturnykh formul Smolyaka k chislennomu integrirovaniyu koeffitsientov Fure i v zadachakh vosstanovleniya”, Izv. vuzov. Matem., 2010, no. 3, 52–71 | Zbl

[18] Temirgaliev N., “Tenzornye proizvedeniya funktsionalov i ikh primeneniya”, Dokl. AN, 430:4 (2010), 460–465 | Zbl