Recognition of a sequence as a structure containing series of recurring vectors from an alphabet
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1212-1224 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A polynomial-time algorithm is designed for finding an optimal solution of a discrete optimization problem to which a pattern recognition problem is reduced, namely, the noise-proof recognition of a sequence as a structure consisting of contiguous subsequences in the form of series of identical nonzero vectors from an alphabet of vectors in the Euclidean space that alternate with zero vectors.
@article{ZVMMF_2013_53_7_a15,
     author = {A. V. Kel'manov and L. V. Mikhailova},
     title = {Recognition of a sequence as a structure containing series of recurring vectors from an alphabet},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1212--1224},
     year = {2013},
     volume = {53},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a15/}
}
TY  - JOUR
AU  - A. V. Kel'manov
AU  - L. V. Mikhailova
TI  - Recognition of a sequence as a structure containing series of recurring vectors from an alphabet
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1212
EP  - 1224
VL  - 53
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a15/
LA  - ru
ID  - ZVMMF_2013_53_7_a15
ER  - 
%0 Journal Article
%A A. V. Kel'manov
%A L. V. Mikhailova
%T Recognition of a sequence as a structure containing series of recurring vectors from an alphabet
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1212-1224
%V 53
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a15/
%G ru
%F ZVMMF_2013_53_7_a15
A. V. Kel'manov; L. V. Mikhailova. Recognition of a sequence as a structure containing series of recurring vectors from an alphabet. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1212-1224. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a15/

[1] Kelmanov A. V., Khamidullin S. A., “Aposteriornoe obnaruzhenie zadannogo chisla odinakovykh podposledovatelnostei v kvaziperiodicheskoi posledovatelnosti”, Zh. vychisl. matem. i matem. fiz., 41:5 (2001), 807–820

[2] Kelmanov A. V., Khamidullin S. A., Okolnishnikova L. V., “Aposteriornoe obnaruzhenie odinakovykh podposledovatelnostei-fragmentov v kvaziperiodicheskoi posledovatelnosti”, Sibirskii zh. industrialnoi matem., 5:2 (10) (2002), 94–108

[3] Kelmanov A. V., Khamidullin S. A., “Raspoznavanie kvaziperiodicheskoi posledovatelnosti, obrazovannoi iz zadannogo chisla odinakovykh podposledovatelnostei”, Sibirskii zh. industrialnoi matem., 2:1 (1999), 53–74

[4] Kelmanov A. V., Khamidullin S. A., Okolnishnikova L. V., “Raspoznavanie kvaziperiodicheskoi posledovatelnosti, vklyuchayuschei odinakovye podposledovatelnosti-fragmenty”, Sibirskii zh. industrialnoi matem., 5:4 (12) (2002), 38–54

[5] Kelmanov A. V., Mikhailova L. V., “Sovmestnoe obnaruzhenie v kvaziperiodicheskoi posledovatelnosti zadannogo chisla fragmentov iz etalonnogo nabora i ee razbienie na uchastki, vklyuchayuschie serii odinakovykh fragmentov”, Zh. vychisl. matem. i matem. fiz., 46:1 (2006), 172–189

[6] Kelmanov A. V., Mikhailova L. V., “Aposteriornoe obnaruzhenie kvaziperiodicheskikh fragmentov iz etalonnogo nabora v chislovoi posledovatelnosti i ee razbienie na uchastki, vklyuchayuschie serii odinakovykh fragmentov”, Zh. vychisl. matem. i matem. fiz., 48:5 (2008), 168–184

[7] Kelmanov A. V., Mikhailova L. V., “Raspoznavanie chislovoi posledovatelnosti, vklyuchayuschei serii kvaziperiodicheski povtoryayuschikhsya etalonnykh fragmentov. Sluchai izvestnogo chisla fragmentov”, Sibirskii zh. industrialnoi matem., 8:3 (23) (2005), 69–86

[8] Kelmanov A. V., Mikhailova L. V., “Raspoznavanie chislovoi posledovatelnosti, vklyuchayuschei serii kvaziperiodicheski povtoryayuschikhsya etalonnykh fragmentov”, Sibirskii zh. industrialnoi matem., 10:4 (32) (2007), 61–75

[9] Kelmanov A. V., Khamidullin S. A., “Aposteriornoe sovmestnoe obnaruzhenie i razlichenie zadannogo chisla podposledovatelnostei v kvaziperiodicheskoi posledovatelnosti”, Sibirskii zh. industrialnoi matem., 2:2 (4) (1999), 106–119

[10] Kelmanov A. V., Okolnishnikova L. V., “Aposteriornoe sovmestnoe obnaruzhenie i razlichenie podposledovatelnostei v kvaziperiodicheskoi posledovatelnosti”, Sibirskii zh. industrialnoi matem., 3:2 (6) (2000), 115–139

[11] Sistema QPSLab dlya resheniya zadach kompyuternogo analiza i raspoznavaniya chislovykh posledovatelnostei s kvaziperiodicheskoi strukturoi http://math.nsc.ru/s̃erge/qpsl/