Recognition of a sequence as a structure containing series of recurring vectors from an alphabet
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1212-1224
Voir la notice de l'article provenant de la source Math-Net.Ru
A polynomial-time algorithm is designed for finding an optimal solution of a discrete optimization problem to which a pattern recognition problem is reduced, namely, the noise-proof recognition of a sequence as a structure consisting of contiguous subsequences in the form of series of identical nonzero vectors from an alphabet of vectors in the Euclidean space that alternate with zero vectors.
@article{ZVMMF_2013_53_7_a15,
author = {A. V. Kel'manov and L. V. Mikhailova},
title = {Recognition of a sequence as a structure containing series of recurring vectors from an alphabet},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1212--1224},
publisher = {mathdoc},
volume = {53},
number = {7},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a15/}
}
TY - JOUR AU - A. V. Kel'manov AU - L. V. Mikhailova TI - Recognition of a sequence as a structure containing series of recurring vectors from an alphabet JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1212 EP - 1224 VL - 53 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a15/ LA - ru ID - ZVMMF_2013_53_7_a15 ER -
%0 Journal Article %A A. V. Kel'manov %A L. V. Mikhailova %T Recognition of a sequence as a structure containing series of recurring vectors from an alphabet %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 1212-1224 %V 53 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a15/ %G ru %F ZVMMF_2013_53_7_a15
A. V. Kel'manov; L. V. Mikhailova. Recognition of a sequence as a structure containing series of recurring vectors from an alphabet. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1212-1224. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a15/