Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1193-1211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A collision integral is constructed taking into account the rotational degrees of freedom of the gas molecules. Its truncation error is shown to be second order in the rotational velocity mesh size. In the solution of the kinetic equation, the resulting collision integral is directly computed using a projection method. Preliminarily, the differential scattering cross sections of nitrogen molecules are computed by applying the method of classical trajectories. The resulting cross section values are tabulated in multimillion data arrays. The one-dimensional problems of shock wave structure and heat transfer between two plates are computed as tests, and the results are compared with experimental data. The convergence of the results with decreasing rotational velocity mesh size is analyzed.
@article{ZVMMF_2013_53_7_a14,
     author = {Yu. A. Anikin and O. I. Dodulad},
     title = {Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1193--1211},
     year = {2013},
     volume = {53},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a14/}
}
TY  - JOUR
AU  - Yu. A. Anikin
AU  - O. I. Dodulad
TI  - Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1193
EP  - 1211
VL  - 53
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a14/
LA  - ru
ID  - ZVMMF_2013_53_7_a14
ER  - 
%0 Journal Article
%A Yu. A. Anikin
%A O. I. Dodulad
%T Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1193-1211
%V 53
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a14/
%G ru
%F ZVMMF_2013_53_7_a14
Yu. A. Anikin; O. I. Dodulad. Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1193-1211. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a14/

[1] Bird G. A., Molecular gas dynamics and the direct simulation of gas flows, Clarendon Press, Oxford, 1994

[2] Tcheremissine F. G., “Solution to the Boltzmann kinetic equation for high-speed flows”, Comput. Math. and Math. Phys., 46:2 (2006), 315–329 | DOI | Zbl

[3] Cheremisin F. G., “Konservativnyi metod vychisleniya integrala stolknovenii Boltsmana”, Dokl. AN, 357:1 (1997), 1–4

[4] Wang Chang C. S., Uhlenbeck G. E., Transport phenomena in polyatomic gases, University of Michigan Research Report No CM4681, 1951

[5] Fertsiger Dzh., Kaper G., Matematicheskaya teoriya protsessov perenosa v gazakh, Mir, M., 1976, 328 pp.

[6] Bogdanov A. V., Dubrovskii G. V., Osipov A. I., Strelchenya V. M., Vraschatelnaya relaksatsiya v gazakh i plazme, Energoatomizdat, M., 1991, 41

[7] Snider R. F., “Quantum-mechanical modified Boltzmann equation for degenerate internal states”, J. Chem. Phys., 32:4 (1960), 1051–1060 | DOI

[8] Thomas M. W., Snider R. F., “Boltzmann equation and angular momentum conservation”, J. Statistical Phys., 2:1 (1970), 61–81 | DOI

[9] Cheremisin F. G., “Reshenie kineticheskogo uravneniya Boltsmana dlya mnogoatomnogo gaza”, Zh. vychisl. matem. i matem. fiz., 52:2 (2012), 270–287 | Zbl

[10] Beylich A. E., An interlaced system for nitrogen gas, Technisch Hochcshule Report, Aachen, 2000 | Zbl

[11] Koura K., “Monte Carlo direct simulation of rotational relaxation of diatomic molecules using classical trajectory calculations: Nitrogen shock wave”, Phys. Fluids, 9:11 (1997), 3543–3549 | DOI

[12] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 3, Nauka, M., 1989, 698 pp.

[13] Hoffman D. K., Dahler J. S., “The Boltzmann equation for polyatomic gas”, J. Statistical Phys., 1:4 (1969), 521–558 | DOI

[14] Anikin Yu. A., “O tochnosti proektsionnogo scheta integrala stolknovenii”, Zh. vychisl. matem. i matem. fiz., 52:4 (2012), 697–719 | Zbl

[15] Galbraith A. L., Hall C. K., “Vapor-liquid phase equilibria for mixtures containing diatomic Lennard–Jones molecules”, Fluid Phase Equilibria, 241:1–2 (2006), 175–185 | DOI

[16] Berns R. M., van der Avoird A., “N2-N2 interaction potential from ab initio calculations, with application to the structure of (N2)2”, J. Chem. Phys., 72:11 (1980), 6107–6116 | DOI

[17] Prince P. J., Dormand J. R., “High order embedded Runge–Kutta formulae”, J. Comput. Appl. Math., 7:1 (1981), 67–75 | DOI | Zbl

[18] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990

[19] Lemmon E. W., Jacobsen R. T., “Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air”, Internat. J. Thermophys., 25:1 (2004), 21–69 | DOI

[20] Harten A., “Hish resolution schemes for hyperbolic conservation laws”, J. Computat. Phys., 49:3 (1983), 357–393 | DOI | Zbl

[21] Sweby P. K., “High resolution schemes using flux-limiters for hyperbolic conservation laws”, SIAM J. Number. Anal., 21:5 (1984), 995–1011 | DOI | Zbl

[22] Monchick L., Pereira A. N. G., Mason E. A., “Heat conductivity of polyatomic and polar gases and gas mixtures”, J. Chem. Phys., 42:9 (1965), 3241–3256 | DOI

[23] Carnevale E. H., Carey C., Larson G., “Ultrasonic determination of rotational collision numbers and vibrational relaxation times of polyatomic gases at high temperatures”, J. Chem. Phys., 47:8 (1967), 2829–2835 | DOI

[24] Healy R. N., Storvick T. S., “Rotational collision number and Eucken factors from therma transpiration measurements”, J. Chem. Phys., 50:3 (1969), 1419–1427 | DOI

[25] Winter T. G., Hill G. L., “High-temperature ultrasonic measurements rotational relaxation in hydrogen, deuterium, nitrogen and oxygen”, J. Acoust. Soc. Am., 42:4 (1967), 848–858 | DOI

[26] Kistemaker P. G., Tom A., deVries A. E., “Rotational relaxation numbers for the isotopic molecule of N2 and CO”, Physica, 48:3 (1970), 414–424 | DOI

[27] Annis B. K., Malinuskas A. P., “Temperature dependence of rotational collision numbers from thermal transpiration”, J. Chem. Phys., 54:11 (1971), 4763–4768 | DOI

[28] Nyeland C., Bulling G. D., “Transport coefficients of diatomic gases: Internal-state analysis for rotational and vibrational degrees of freedom”, J. Chem. Phys., 92 (1988), 1752–1755 | DOI

[29] Nyeland C., Billing G. D., “Rotational relaxation of homonuclear diatomic molecules by classical trajectory computation”, J. Chem. Phys., 30:3 (1978), 401–406

[30] Alsmeyer H., “Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam”, J. Fluid. Mech., 74:3 (1976), 497–513 | DOI

[31] Robben F., Talbot L., “Experimental study of the rotational distribution function of nitrogen in shock wave”, J. Phys. Fluids, 9:4 (1966), 653–662 | DOI