@article{ZVMMF_2013_53_7_a14,
author = {Yu. A. Anikin and O. I. Dodulad},
title = {Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1193--1211},
year = {2013},
volume = {53},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a14/}
}
TY - JOUR AU - Yu. A. Anikin AU - O. I. Dodulad TI - Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1193 EP - 1211 VL - 53 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a14/ LA - ru ID - ZVMMF_2013_53_7_a14 ER -
%0 Journal Article %A Yu. A. Anikin %A O. I. Dodulad %T Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 1193-1211 %V 53 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a14/ %G ru %F ZVMMF_2013_53_7_a14
Yu. A. Anikin; O. I. Dodulad. Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1193-1211. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a14/
[1] Bird G. A., Molecular gas dynamics and the direct simulation of gas flows, Clarendon Press, Oxford, 1994
[2] Tcheremissine F. G., “Solution to the Boltzmann kinetic equation for high-speed flows”, Comput. Math. and Math. Phys., 46:2 (2006), 315–329 | DOI | Zbl
[3] Cheremisin F. G., “Konservativnyi metod vychisleniya integrala stolknovenii Boltsmana”, Dokl. AN, 357:1 (1997), 1–4
[4] Wang Chang C. S., Uhlenbeck G. E., Transport phenomena in polyatomic gases, University of Michigan Research Report No CM4681, 1951
[5] Fertsiger Dzh., Kaper G., Matematicheskaya teoriya protsessov perenosa v gazakh, Mir, M., 1976, 328 pp.
[6] Bogdanov A. V., Dubrovskii G. V., Osipov A. I., Strelchenya V. M., Vraschatelnaya relaksatsiya v gazakh i plazme, Energoatomizdat, M., 1991, 41
[7] Snider R. F., “Quantum-mechanical modified Boltzmann equation for degenerate internal states”, J. Chem. Phys., 32:4 (1960), 1051–1060 | DOI
[8] Thomas M. W., Snider R. F., “Boltzmann equation and angular momentum conservation”, J. Statistical Phys., 2:1 (1970), 61–81 | DOI
[9] Cheremisin F. G., “Reshenie kineticheskogo uravneniya Boltsmana dlya mnogoatomnogo gaza”, Zh. vychisl. matem. i matem. fiz., 52:2 (2012), 270–287 | Zbl
[10] Beylich A. E., An interlaced system for nitrogen gas, Technisch Hochcshule Report, Aachen, 2000 | Zbl
[11] Koura K., “Monte Carlo direct simulation of rotational relaxation of diatomic molecules using classical trajectory calculations: Nitrogen shock wave”, Phys. Fluids, 9:11 (1997), 3543–3549 | DOI
[12] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 3, Nauka, M., 1989, 698 pp.
[13] Hoffman D. K., Dahler J. S., “The Boltzmann equation for polyatomic gas”, J. Statistical Phys., 1:4 (1969), 521–558 | DOI
[14] Anikin Yu. A., “O tochnosti proektsionnogo scheta integrala stolknovenii”, Zh. vychisl. matem. i matem. fiz., 52:4 (2012), 697–719 | Zbl
[15] Galbraith A. L., Hall C. K., “Vapor-liquid phase equilibria for mixtures containing diatomic Lennard–Jones molecules”, Fluid Phase Equilibria, 241:1–2 (2006), 175–185 | DOI
[16] Berns R. M., van der Avoird A., “N2-N2 interaction potential from ab initio calculations, with application to the structure of (N2)2”, J. Chem. Phys., 72:11 (1980), 6107–6116 | DOI
[17] Prince P. J., Dormand J. R., “High order embedded Runge–Kutta formulae”, J. Comput. Appl. Math., 7:1 (1981), 67–75 | DOI | Zbl
[18] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990
[19] Lemmon E. W., Jacobsen R. T., “Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air”, Internat. J. Thermophys., 25:1 (2004), 21–69 | DOI
[20] Harten A., “Hish resolution schemes for hyperbolic conservation laws”, J. Computat. Phys., 49:3 (1983), 357–393 | DOI | Zbl
[21] Sweby P. K., “High resolution schemes using flux-limiters for hyperbolic conservation laws”, SIAM J. Number. Anal., 21:5 (1984), 995–1011 | DOI | Zbl
[22] Monchick L., Pereira A. N. G., Mason E. A., “Heat conductivity of polyatomic and polar gases and gas mixtures”, J. Chem. Phys., 42:9 (1965), 3241–3256 | DOI
[23] Carnevale E. H., Carey C., Larson G., “Ultrasonic determination of rotational collision numbers and vibrational relaxation times of polyatomic gases at high temperatures”, J. Chem. Phys., 47:8 (1967), 2829–2835 | DOI
[24] Healy R. N., Storvick T. S., “Rotational collision number and Eucken factors from therma transpiration measurements”, J. Chem. Phys., 50:3 (1969), 1419–1427 | DOI
[25] Winter T. G., Hill G. L., “High-temperature ultrasonic measurements rotational relaxation in hydrogen, deuterium, nitrogen and oxygen”, J. Acoust. Soc. Am., 42:4 (1967), 848–858 | DOI
[26] Kistemaker P. G., Tom A., deVries A. E., “Rotational relaxation numbers for the isotopic molecule of N2 and CO”, Physica, 48:3 (1970), 414–424 | DOI
[27] Annis B. K., Malinuskas A. P., “Temperature dependence of rotational collision numbers from thermal transpiration”, J. Chem. Phys., 54:11 (1971), 4763–4768 | DOI
[28] Nyeland C., Bulling G. D., “Transport coefficients of diatomic gases: Internal-state analysis for rotational and vibrational degrees of freedom”, J. Chem. Phys., 92 (1988), 1752–1755 | DOI
[29] Nyeland C., Billing G. D., “Rotational relaxation of homonuclear diatomic molecules by classical trajectory computation”, J. Chem. Phys., 30:3 (1978), 401–406
[30] Alsmeyer H., “Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam”, J. Fluid. Mech., 74:3 (1976), 497–513 | DOI
[31] Robben F., Talbot L., “Experimental study of the rotational distribution function of nitrogen in shock wave”, J. Phys. Fluids, 9:4 (1966), 653–662 | DOI