@article{ZVMMF_2013_53_7_a13,
author = {Quanyong Zhu and Quanxiang Wang and Zhiyue Zhang},
title = {The fractional step domain decomposition method for numerical solution of a class of viscous wave equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1192},
year = {2013},
volume = {53},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a13/}
}
TY - JOUR AU - Quanyong Zhu AU - Quanxiang Wang AU - Zhiyue Zhang TI - The fractional step domain decomposition method for numerical solution of a class of viscous wave equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1192 VL - 53 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a13/ LA - en ID - ZVMMF_2013_53_7_a13 ER -
%0 Journal Article %A Quanyong Zhu %A Quanxiang Wang %A Zhiyue Zhang %T The fractional step domain decomposition method for numerical solution of a class of viscous wave equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 1192 %V 53 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a13/ %G en %F ZVMMF_2013_53_7_a13
Quanyong Zhu; Quanxiang Wang; Zhiyue Zhang. The fractional step domain decomposition method for numerical solution of a class of viscous wave equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a13/
[1] A. Fatyanov, A. Terekhov, “High-performance modeling acoustic and elastic waves using the parallel Dichotomy Algorithm”, J. Comput. Phys., 230 (2011), 1992–2003 | DOI | Zbl
[2] S. Candel, “A review of numerical methods in acoustic wave propagation”, Recent Advances in Aeroacoustics, Springer, New York, 1986
[3] E. Chungm B. Engquist, “Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions”, SIAM J. Numer. Anal., 47 (2009), 3820–3848 | DOI
[4] Y. Liu, M. Sen, “A new time-space domain high-order finite-difference method for the acoustic wave equation”, J. Comput. Phys., 228 (2009), 8779–8806 | DOI | Zbl
[5] H. Liu, J. Ralston, “Recovery of high frequency wave fields for the acoustic wave equation”, Multiscale Model. Simul., 8 (2009), 428–444 | DOI
[6] D. Joseph, L. Preziosi, “Heat waves”, Rev. Mod. Phys., 61 (1989), 41–73 | DOI | Zbl
[7] A. Joshi, A. Majumdar, “Transient ballistic and diffusive phonon heat transport in thin films”, J. Appl. Phys., 74 (1993), 31–39 | DOI
[8] T. Qiu, C. Tien, “Heat transfer mechanisms during short-pulse laser heating of metals”, J. Heat Transfer, 115 (1993), 835–841 | DOI
[9] D. Tzou, “Experimental support for the lagging behavior in heat propagation”, J. Thermophys. Heat Transfer, 9 (1995), 689–693 | DOI
[10] W. Dai, R. Nassar, “A finite difference method for solving the heat transport equation at the microscale”, Numer. Methods Partial Differ. Equations, 15 (1999), 697–708 | Zbl
[11] W. Dai, R. Nassar, “A hybrid finite element-finite difference method for solving three-dimensional heat transport equations in a double-layered thin him with microscale thickness”, Numer. Heat Transfer Part A Appl., 38 (2000), 573–588 | DOI
[12] J. Douglas, Jr., S. Kim, H. Lim, “An improved alternating-direction method for a viscous wave equation”, Contemp. Math., 329, 2003, 99–104 | DOI | Zbl
[13] J. Zhang, J. Zhao, “Finite difference scheme and iterative solution of two dimensional microscale heat transport equation”, J. Comput. Phys., 169 (2001), 1–15 | DOI
[14] J. Zhang, J. Zhao, “Iterative solution and finite difference approximations to 3D microscale heat transport equation”, Math. Comput. Simulat., 57 (2001), 387–404 | DOI | Zbl
[15] H. Lim, S. Kim, J. Douglas, Jr., “Numerical methods for viscous and nonviscous wave equations”, Appl. Numer. Math., 52 (2007), 194–212 | DOI
[16] H. Li, “Analysis and application of finite volume element methods to a class of partial differential equations”, J. Math. Anal. Appl., 358 (2009), 47–55 | DOI | Zbl
[17] J. Rinzel, “Spatial stability of traveling wave solutions of a nerve conduction equation”, Biophys. J., 15 (1975), 975–988 | DOI
[18] G. Ponce, “Global existence of small solutions to a class of nonlinear evolution equations”, Nonlinear Anal. Theor., 9 (1985), 399–418 | DOI | Zbl
[19] P. Krutitskii, “The first initial-boundary value problem for the equation of gravity-inertial waves in a multiply connected domain”, Comp. Math. Math. Phys., 37 (1997), 113–123 | Zbl
[20] P. Krutitskii, “Exterior initial-boundary value problem for an evolutionary equation in a multiply connected domain”, Differ. Equations, 34 (1998), 1629–1638 | Zbl
[21] Z. Zhang, “The finite element numerical analysis for a class nonlinear evolution equations”, Appl. Math. Comput., 166 (2005), 489–500 | DOI | Zbl
[22] W. Dai, R. Nassar, “An unconditionally stable finite difference scheme for solving a 3D heat transport equation in a sub-microscale thin film”, J. Comput. Appl. Math., 145 (2002), 247–260 | DOI | Zbl
[23] Z. Zhang, T. Wang, “The alternating group explicit parallel algorithms for convection dominated diffusion problem of variable coefficient”, Int. J. Comput. Math., 81 (2004), 823–834 | DOI | Zbl
[24] Z. Zhang, D. Deng, “A fourth-order finite difference solver for nerve conduction equation in rectangular domains”, J. Math. Phys., 49 (2008), 043508 | DOI | Zbl
[25] Z. Zhang, D. Deng, “A new alternating-direction finite element method for hyperbolic equation”, Numer. Methods Partial Differ. Equations, 23 (2007), 1530–1559 | DOI | Zbl
[26] S. Guo, Z. Zhang, “Numerical methods based on characteristic centered finite difference procedure for a class of nonlinear evolution equations”, Chin. J. Comput. Phys., 24 (2007), 637–646
[27] Z. Zhang, “ASE-I parallel numerical method for a class of nonlinear evolution equation”, Chin. J. Comput. Mech., 19 (2002), 154–158
[28] Yanenko N. N., The Method of Fractional Steps, Springer-Verlag, Berlin, 1971 | Zbl
[29] G. Strang, “On the construction and comparison of difference schemes”, SIAM J. Numer. Anal., 5 (1968), 506–517 | DOI | Zbl
[30] G. Marchuk, “Splitting and alternating direction methods”, Handbook of Numerical Analysis, v. 1, eds. P. Ciarlet, J. Lions, 1990, 197–462 | DOI | Zbl
[31] A. Samarskii, P. Vabishchevich, Additive schemes for problems of mathematical physics (Additivnye skhemy dlya zadach matematicheskoj fiziki), Nauka, M., 1999 (in Russian)
[32] P. Vabishchevich, “Additive schemes for certain operator-differential equations”, Comput. Math. Math. Phys., 50 (2010), 2033–2043 | DOI | Zbl
[33] P. Vabishchevich, “Construction of splitting schemes based on transition operator approximation”, Comput. Math. Math. Phys., 52 (2012), 235–244 | DOI | Zbl
[34] A. Samarskii, P. Matus, P. Vabishchevich, Difference schemes with operator factors, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 2002 | Zbl
[35] T. Mathew, Domain decomposition methods for the numerical solution of partial differential equations, Lecture Notes in Computational Science and Engineering, Springer, Berlin, 2008 | DOI
[36] A. Samarskii, P. Vabishchevich, “Domain decomposition methods for parabolic problems”, Eleventh International Conference on Domain Decomposition Methods, eds. C. Lai, P. Bjorstad, M. Gross, O. Widlund, 1999, 341–347 DDM.org
[37] P. Vabishchevich, “Substructuring domain decomposition scheme for unsteady problems”, Comput. Methods Appl. Math., 11 (2011), 241–268
[38] C. Dawson, Q. Du, T. Dupont, “A finite difference domain decomposition algorithm for numerical solution of the heat equation”, Math. Comput., 57 (1991), 63–71 | DOI | Zbl
[39] Q. Du, M. Mu, Z. Wu, “Efficient parallel algorithms for parabolic problems”, SIAM J. Numer. Anal., 39 (2001), 1469–1487 | Zbl
[40] C. Du, D. Liang, “An efficient S-DDM iterative approach for compressible contamination fluid flows in porous media”, J. Comput. Phys., 229 (2010), 4501–4521 | DOI | Zbl