@article{ZVMMF_2013_53_7_a12,
author = {M. E. Frolov},
title = {Application of functional error estimates with mixed approximations to~plane problems of linear elasticity},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1178--1191},
year = {2013},
volume = {53},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a12/}
}
TY - JOUR AU - M. E. Frolov TI - Application of functional error estimates with mixed approximations to plane problems of linear elasticity JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1178 EP - 1191 VL - 53 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a12/ LA - ru ID - ZVMMF_2013_53_7_a12 ER -
%0 Journal Article %A M. E. Frolov %T Application of functional error estimates with mixed approximations to plane problems of linear elasticity %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 1178-1191 %V 53 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a12/ %G ru %F ZVMMF_2013_53_7_a12
M. E. Frolov. Application of functional error estimates with mixed approximations to plane problems of linear elasticity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1178-1191. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a12/
[1] Prager W., Synge J. L., “Approximations in elasticity based on the concept of function space”, Quart. Appl. Math., 5 (1947), 241–269 | Zbl
[2] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | Zbl
[3] Repin S. I., A posteriori estimates for partial differential equations, Walter de Gruyter, Berlin–New York, 2008
[4] Frolov M. E., Churilova M. A., “Adaptatsiya setok na osnove funktsionalnykh aposteriornykh otsenok s approksimatsiei Ravyara–Toma”, Zh. vychisl. matem. i matem. fiz., 52:7 (2012), 1277–1288 | Zbl
[5] Raviart P. A., Thomas J. M., “A mixed finite element method for second order elliptic problems”, Lecture Notes in Mathematics, 606, Springer, Berlin, 1977, 292–315 | DOI
[6] Arnold D. N., Boffi D., Falk R. S., “Quadrilateral H(div) finite elements”, SIAM J. Numer. Anal., 42:6 (2005), 2429–2451 | DOI | Zbl
[7] Muzalevsky A. V., Repin S. I., “On two-sided error estimates for approximate solutions of problems in the linear theory of elasticity”, Russ. J. Numer. Anal. Math. Model., 18:1 (2003), 65–85 | DOI | Zbl
[8] Repin S. I., Xanthis L. S., “A posteriori error estimation for elastoplastic problems based on duality theory”, Comput. Methods Appl. Mech. Engrg., 138:1–4 (1996), 317–339 | DOI | Zbl
[9] Falk R. S., “Finite element methods for linear elasticity”, Mixed finite elements, compatibility conditions, and applications, Lecture Notes in Mathematics, 1939, Springer, Berlin; Fondazione CIME Roberto Conti, Florenz, 2008, 159–194 | DOI | Zbl
[10] Duran R. G., “Mixed finite element methods”, Mixed finite elements, compatibility conditions, and applications, Lecture Notes in Mathematics, 1939, Springer, Berlin; Fondazione CIME Roberto Conti, Florenz, 2008, 1–44 | DOI | Zbl
[11] Bochev P. B., Ridzal D., “Rehabilitation of the lowest-order Raviart–Thomas element on quadrilateral grids”, SIAM J. Numer. Anal., 47:1 (2009), 487–507 | DOI | Zbl
[12] Kwak D. Y., Pyo H. C., “Mixed finite element methods for general quadrilateral grids”, Appl. Math. Comput., 217:14 (2011), 6556–6565 | DOI | Zbl