Application of functional error estimates with mixed approximations to plane problems of linear elasticity
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1178-1191 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

S. I. Repin and his colleagues' studies addressing functional a posteriori error estimates for solutions of linear elasticity problems are further developed. Although the numerical results obtained for planar problems by A. V. Muzalevsky and Repin point to advantages of the adaptive approach used, the degree of overestimation of the absolute error increases noticeably with mesh refinement. This shortcoming is eliminated by using approximations typical of mixed finite element methods. A comparative analysis is conducted for the classical finite element approximations, mixed Raviart–Thomas approximations, and relatively recently proposed Arnold–Boffi–Falk mixed approximations. It is shown that the last approximations are the most efficient.
@article{ZVMMF_2013_53_7_a12,
     author = {M. E. Frolov},
     title = {Application of functional error estimates with mixed approximations to~plane problems of linear elasticity},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1178--1191},
     year = {2013},
     volume = {53},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a12/}
}
TY  - JOUR
AU  - M. E. Frolov
TI  - Application of functional error estimates with mixed approximations to plane problems of linear elasticity
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1178
EP  - 1191
VL  - 53
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a12/
LA  - ru
ID  - ZVMMF_2013_53_7_a12
ER  - 
%0 Journal Article
%A M. E. Frolov
%T Application of functional error estimates with mixed approximations to plane problems of linear elasticity
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1178-1191
%V 53
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a12/
%G ru
%F ZVMMF_2013_53_7_a12
M. E. Frolov. Application of functional error estimates with mixed approximations to plane problems of linear elasticity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1178-1191. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a12/

[1] Prager W., Synge J. L., “Approximations in elasticity based on the concept of function space”, Quart. Appl. Math., 5 (1947), 241–269 | Zbl

[2] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | Zbl

[3] Repin S. I., A posteriori estimates for partial differential equations, Walter de Gruyter, Berlin–New York, 2008

[4] Frolov M. E., Churilova M. A., “Adaptatsiya setok na osnove funktsionalnykh aposteriornykh otsenok s approksimatsiei Ravyara–Toma”, Zh. vychisl. matem. i matem. fiz., 52:7 (2012), 1277–1288 | Zbl

[5] Raviart P. A., Thomas J. M., “A mixed finite element method for second order elliptic problems”, Lecture Notes in Mathematics, 606, Springer, Berlin, 1977, 292–315 | DOI

[6] Arnold D. N., Boffi D., Falk R. S., “Quadrilateral H(div) finite elements”, SIAM J. Numer. Anal., 42:6 (2005), 2429–2451 | DOI | Zbl

[7] Muzalevsky A. V., Repin S. I., “On two-sided error estimates for approximate solutions of problems in the linear theory of elasticity”, Russ. J. Numer. Anal. Math. Model., 18:1 (2003), 65–85 | DOI | Zbl

[8] Repin S. I., Xanthis L. S., “A posteriori error estimation for elastoplastic problems based on duality theory”, Comput. Methods Appl. Mech. Engrg., 138:1–4 (1996), 317–339 | DOI | Zbl

[9] Falk R. S., “Finite element methods for linear elasticity”, Mixed finite elements, compatibility conditions, and applications, Lecture Notes in Mathematics, 1939, Springer, Berlin; Fondazione CIME Roberto Conti, Florenz, 2008, 159–194 | DOI | Zbl

[10] Duran R. G., “Mixed finite element methods”, Mixed finite elements, compatibility conditions, and applications, Lecture Notes in Mathematics, 1939, Springer, Berlin; Fondazione CIME Roberto Conti, Florenz, 2008, 1–44 | DOI | Zbl

[11] Bochev P. B., Ridzal D., “Rehabilitation of the lowest-order Raviart–Thomas element on quadrilateral grids”, SIAM J. Numer. Anal., 47:1 (2009), 487–507 | DOI | Zbl

[12] Kwak D. Y., Pyo H. C., “Mixed finite element methods for general quadrilateral grids”, Appl. Math. Comput., 217:14 (2011), 6556–6565 | DOI | Zbl