Asymptotic distribution of the eigenvalues and eigenfunctions in basic boundary value oscillation problems in hemitropic elasticity
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1162-1177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The basic boundary value oscillation problems for a three-dimensional elastic medium bounded by a closed surface are considered. Asymptotic formulas are derived for the eigenvalue and eigenfunction distributions in the problems.
@article{ZVMMF_2013_53_7_a11,
     author = {Yu. A. Bezhuashvili and R. V. Rukhadze},
     title = {Asymptotic distribution of the eigenvalues and eigenfunctions in basic boundary value oscillation problems in hemitropic elasticity},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1162--1177},
     year = {2013},
     volume = {53},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a11/}
}
TY  - JOUR
AU  - Yu. A. Bezhuashvili
AU  - R. V. Rukhadze
TI  - Asymptotic distribution of the eigenvalues and eigenfunctions in basic boundary value oscillation problems in hemitropic elasticity
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1162
EP  - 1177
VL  - 53
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a11/
LA  - ru
ID  - ZVMMF_2013_53_7_a11
ER  - 
%0 Journal Article
%A Yu. A. Bezhuashvili
%A R. V. Rukhadze
%T Asymptotic distribution of the eigenvalues and eigenfunctions in basic boundary value oscillation problems in hemitropic elasticity
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1162-1177
%V 53
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a11/
%G ru
%F ZVMMF_2013_53_7_a11
Yu. A. Bezhuashvili; R. V. Rukhadze. Asymptotic distribution of the eigenvalues and eigenfunctions in basic boundary value oscillation problems in hemitropic elasticity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1162-1177. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a11/

[1] Kostyuchenko A. G., Sargsyan I. S., Raspredelenie sobstvennykh znachenii, Nauka, M., 1979 | Zbl

[2] Pleijel A., “Proprietes asymptotiques des functions et valeurs propres de certains problemes de vibrations”, Arkiv für Mat. Astr. Fis., 27A:13 (1940), 101

[3] Burchuladze T. V., “Ob asimptoticheskom raspredelenii sobstvennykh funktsii kolebaniya uprugogo tela”, Soobsch. AN Gruz. SSR, 15:4 (1954), 193–200 | Zbl

[4] Burchuladze T. V., “K teorii granichnykh zadach kolebaniya uprugogo tela”, Trudy TGU, 64 (1957), 215–240

[5] Dikhamindzhia R. G., “Asimptoticheskoe raspredelenie sobstvennykh funktsii i sobstvennykh znachenii osnovnykh granichnykh zadach kolebaniya momentnoi teorii uprugosti”, Trudy Tbilisskogo matem. in-ta, 73, 1983, 64–71 | Zbl

[6] Burchuladze Y., Rukhadze R., “Asymptotic distribution of eigenfunctions and eigenvalues of basic boundary-contact oscillation problems of the couple-stress elasticity theory”, Mem. Differential Equations Math. Phys., 15 (1998), 9–28

[7] Burchuladze T., Rukhadze R., “Asymptotic distribution of eigenfunctions and eigenvalues of the basic boundary-contact oscillation problems of the classical theory of elascity”, Georgian Math. J., 6:2 (1999), 107–126 | DOI | Zbl

[8] Svanadze M., “Asymptotic behavior of eigenfunctions and eigenfrequencles of oscillation boundary value problems of the linear theory of elastic mixtures”, Georgian math. J., 3:2 (1996), 177–200 | DOI | Zbl

[9] Carleman T., “Proprietes asymptotiques des fonctions fondamentales des membranes vibrantes”, Scand. Mat. Kongr. (Stockholm, 14–18 Aout. 1934), Lurd, 1935, 34–44

[10] Kupradze V. D., Gegeliya T. G., Basheleishvili M. I., Burchuladze T. V., Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti, Nauka, M., 1971

[11] Kuvshinskii E. V., Aero E. A., “Kontinualnaya teoriya asimmetricheskoi uprugosti. Uchet “vnutrennego” vrascheniya”, Fiz. tverdogo tela, 5:9 (1963), 2591–2598

[12] Aero E. A., Kuvshinskii E. V., “Kontinualnaya teoriya asimmetricheskoi uprugosti. Ravnovesie izotropnogo tela”, Fiz. tverdogo tela, 6:9 (1964), 2689–2699

[13] Nowacki J. P., Nowacki W., “Some problems of hemitropic micropolar continuum”, Bull. Acad. Polon. Sci. Ser. Sci. Tech., 25:4 (1975), 297

[14] Natroshvili D., Giorgashvili L., Zazashvili Sh., “Steady state oscillation problems in the theory of elasticity for chiral materials”, J. Integral. Equat. Appl., 17:1 (2005), 19–69 | DOI | Zbl

[15] Burchuladze T., Rukhadze R., Bezhuashvili Yu., “On the matrix of fundamental solutions of the system equations for oscillation of hemitropic micropolar medium”, Bull. Georgian Acad. Sci., 159:1 (1999), 32–36 | Zbl

[16] Giorgashvili L. G., “Reshenie osnovnykh granichnykh zadach statiki dlya gemitropnoi mikropolyarnoi sredy”, Trudy in-ta prikl. matem., 16 (1985), 56–79

[17] Natroshvili D. G., Otsenki tenzorov Grina teorii uprugosti i nekotorye ikh prilozheniya, TGU, Tbilisi, 1978

[18] Natroshvili D., Glorgashvili L., Stratis I., “Representation formulae of general solutions in the theory of hemitropic elasticity”, J. Mech. Appl. Math., 59:4 (2006), 451–474 | DOI | Zbl

[19] Hardy G. H., Littlewood J. E., “Notes on the theory of series. XI: On Tauberian theorems”, Proceedings L. M. S., 2:30 (1929), 23–37 | Zbl