Nonlinear transmission eigenvalue problem describing TE wave propagation in two-layered cylindrical dielectric waveguides
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1150-1161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with propagation of surface TE waves in a circular nonhomogeneous two-layered dielectric waveguide filled with a Kerr nonlinear medium. The problem is reduced to the analysis of a nonlinear integral equation with a kernel in the form of a Green’s function. The existence of propagating TE waves is proved using the contraction mapping method. For the numerical solution of the problem, two methods are proposed: an iterative algorithm (whose convergence is proved) and a method based on solving an auxiliary Cauchy problem (the shooting method). The existence of roots of the dispersion equation (propagation constants of the waveguide) is proved. Conditions under which k waves can propagate are obtained, and regions of localization of the corresponding propagation constants are found.
@article{ZVMMF_2013_53_7_a10,
     author = {D. V. Valovik and Yu. G. Smirnov and E. Yu. Smol'kin},
     title = {Nonlinear transmission eigenvalue problem describing {TE} wave propagation in two-layered cylindrical dielectric waveguides},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1150--1161},
     year = {2013},
     volume = {53},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a10/}
}
TY  - JOUR
AU  - D. V. Valovik
AU  - Yu. G. Smirnov
AU  - E. Yu. Smol'kin
TI  - Nonlinear transmission eigenvalue problem describing TE wave propagation in two-layered cylindrical dielectric waveguides
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1150
EP  - 1161
VL  - 53
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a10/
LA  - ru
ID  - ZVMMF_2013_53_7_a10
ER  - 
%0 Journal Article
%A D. V. Valovik
%A Yu. G. Smirnov
%A E. Yu. Smol'kin
%T Nonlinear transmission eigenvalue problem describing TE wave propagation in two-layered cylindrical dielectric waveguides
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1150-1161
%V 53
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a10/
%G ru
%F ZVMMF_2013_53_7_a10
D. V. Valovik; Yu. G. Smirnov; E. Yu. Smol'kin. Nonlinear transmission eigenvalue problem describing TE wave propagation in two-layered cylindrical dielectric waveguides. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1150-1161. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a10/

[1] Veselov G. I., Raevskii S. B., Sloistye metallo-dielektricheskie volnovody, Radio i svyaz, M., 1988

[2] Rapoport Yu., Boardman A., Grimalsky V. et al., “Metamaterials for space physics and the new method for modeling isotropic and hyperbolic nonlinear concentrators”, MMET'2012 Proc., 76–79

[3] Stretton Dzh. A., Teoriya elektromagnetizma, GITTL, M.–L., 1948

[4] Eleonskii P. N., Oganes'yants L. G., Silin V. P., “Cylindrical Nonlinear Waveguides”, Soviet Physics Jetp., 35:1 (1972), 44–47

[5] Nikiforov A. F., Uvarov V. B., Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1978

[6] Valovik D. V., Smirnov Yu. G., “O rasprostranenii TM-polyarizovannykh elektromagnitnykh voln v nelineinom sloe s nelineinostyu, vyrazhennoi zakonom Kerra”, Zh. vychisl. matem. i matem. fiz., 48:12 (2008), 2186–2194

[7] Valovik D. V., “Zadacha o rasprostranenii elektromagnitnykh TM-voln v sloe s proizvolnoi nelineinostyu”, Zh. vychisl. matem. i matem. fiz., 51:9 (2011), 1729–1739 | Zbl

[8] Valovik D. V., Zarembo E. V., “Metod zadachi Koshi dlya resheniya nelineinoi zadachi sopryazheniya na sobstvennye znacheniya dlya TM-voln, rasprostranyayuschikhsya v sloe s proizvolnoi nelineinostyu”, Zh. vychisl. matem. i matem. fiz., 53:1 (2013), 74–89 | DOI | Zbl

[9] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[10] Smirnov Yu. G., Valovik D. V., Electromagnetic Wave Propagation in Nonlinear Layered Waveguide Structures, PSU Press, Penza, 2011

[11] Zilbergleit A. S., Kopilevich Yu. I., Spektralnaya teoriya regulyarnykh volnovodov, FTI, L., 1983

[12] Valovik D. V., Smolkin E. Yu., “Raschet postoyannykh rasprostraneniya neodnorodnykh nelineinykh dvukhsloinykh kruglykh tsilindricheskikh volnovodov metodom zadachi Koshi”, Radiotekhn. i elektronika, 58:6 (2013)