Modification of a method for solving the multiparameter eigenvalue problem for systems of loosely coupled ordinary differential equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1058-1066 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general method for solving the multiparameter eigenvalue problem for loosely coupled systems of ordinary differential equations is examined. Certain modifications of this method are proposed, and the results obtained by using the method in some applied problems are presented.
@article{ZVMMF_2013_53_7_a1,
     author = {E. D. Kalinin},
     title = {Modification of a method for solving the multiparameter eigenvalue problem for systems of loosely coupled ordinary differential equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1058--1066},
     year = {2013},
     volume = {53},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a1/}
}
TY  - JOUR
AU  - E. D. Kalinin
TI  - Modification of a method for solving the multiparameter eigenvalue problem for systems of loosely coupled ordinary differential equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1058
EP  - 1066
VL  - 53
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a1/
LA  - ru
ID  - ZVMMF_2013_53_7_a1
ER  - 
%0 Journal Article
%A E. D. Kalinin
%T Modification of a method for solving the multiparameter eigenvalue problem for systems of loosely coupled ordinary differential equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1058-1066
%V 53
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a1/
%G ru
%F ZVMMF_2013_53_7_a1
E. D. Kalinin. Modification of a method for solving the multiparameter eigenvalue problem for systems of loosely coupled ordinary differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1058-1066. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a1/

[1] Abramov A. A., Ulyanova V. I., “O reshenii uravnenii dlya opredeleniya urovnei energii ionizirovannoi molekuly vodoroda”, Zh. vychisl. matem. i matem. fiz., 1:2 (1961), 351–354

[2] Blum E. K., Chang A. F., “A numerical method for the solution of the double eigenvalue problem”, J. Inst. Maths. Applics., 22 (1978), 29–42 | DOI | Zbl

[3] Blum E. X., Curtis A. R., “A convergent gradient method for matrix eigenvector-eigentuple problems”, Numer. Math., 31 (1978), 231–246 | DOI | Zbl

[4] Browne P. J., Sleeman B. D., “A numerical technique for multiparameter eigenvalue problems”, IMA J. Numer. Analys., 2 (1982), 451–457 | DOI | Zbl

[5] Xingzi Ji, “A two-dimensional bisection method for solving two-parameter eigenvalue problems”, SIAM J. Matrix Analys. and Appl., 13:4 (1992), 1085–1093 | DOI

[6] Abramov A. A., Dyshko A. L., Konyukhova N. B., Levitina T. V., “Vychislenie uglovykh funktsii Lame resheniem vspomogatelnykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 29:6 (1989), 813–830

[7] Levitina T. V., “O chislennom reshenii nekotorykh trekhparametricheskikh spektralnykh zadach”, Zh. vychisl. matem. i matem. fiz., 39:11 (1999), 1787–1801 | Zbl

[8] Abramov A. A., Ulyanova V. I., “Odin metod resheniya mnogoparametricheskikh spektralnykh zadach dlya slabo svyazannykh sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 37:5 (1997), 566–571 | Zbl

[9] Volkmer H., Multiparameter eigenvalue problems and expansions theorems, Springer, Berlin–Heidelberg, 1988 | Zbl

[10] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975

[11] Abramov A. A., Ulyanova V. I., “O vychislenii urovnei energii sistemy: dva yadra–odin elektron”, Teoreticheskaya i eksperimentalnaya khimiya, VI:3 (1970), 384–386