Some issues concerning approximations of functions by Fourier–Bessel sums
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1051-1057

Voir la notice de l'article provenant de la source Math-Net.Ru

Some issues concerning the approximation of one-variable functions from the class $\mathbb{L}_2$ by $n$th-order partial sums of Fourier–Bessel series are studied. Several theorems are proved that estimate the best approximation of a function characterized by the generalized modulus of continuity.
@article{ZVMMF_2013_53_7_a0,
     author = {V. A. Abilov and F. V. Abilova and M. K. Kerimov},
     title = {Some issues concerning approximations of functions by {Fourier{\textendash}Bessel} sums},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1051--1057},
     publisher = {mathdoc},
     volume = {53},
     number = {7},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a0/}
}
TY  - JOUR
AU  - V. A. Abilov
AU  - F. V. Abilova
AU  - M. K. Kerimov
TI  - Some issues concerning approximations of functions by Fourier–Bessel sums
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1051
EP  - 1057
VL  - 53
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a0/
LA  - ru
ID  - ZVMMF_2013_53_7_a0
ER  - 
%0 Journal Article
%A V. A. Abilov
%A F. V. Abilova
%A M. K. Kerimov
%T Some issues concerning approximations of functions by Fourier–Bessel sums
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1051-1057
%V 53
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a0/
%G ru
%F ZVMMF_2013_53_7_a0
V. A. Abilov; F. V. Abilova; M. K. Kerimov. Some issues concerning approximations of functions by Fourier–Bessel sums. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1051-1057. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a0/