Some issues concerning approximations of functions by Fourier–Bessel sums
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1051-1057
Voir la notice de l'article provenant de la source Math-Net.Ru
Some issues concerning the approximation of one-variable functions from the class $\mathbb{L}_2$ by $n$th-order partial sums of Fourier–Bessel series are studied. Several theorems are proved that estimate the best approximation of a function characterized by the generalized modulus of continuity.
@article{ZVMMF_2013_53_7_a0,
author = {V. A. Abilov and F. V. Abilova and M. K. Kerimov},
title = {Some issues concerning approximations of functions by {Fourier{\textendash}Bessel} sums},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1051--1057},
publisher = {mathdoc},
volume = {53},
number = {7},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a0/}
}
TY - JOUR AU - V. A. Abilov AU - F. V. Abilova AU - M. K. Kerimov TI - Some issues concerning approximations of functions by Fourier–Bessel sums JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1051 EP - 1057 VL - 53 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a0/ LA - ru ID - ZVMMF_2013_53_7_a0 ER -
%0 Journal Article %A V. A. Abilov %A F. V. Abilova %A M. K. Kerimov %T Some issues concerning approximations of functions by Fourier–Bessel sums %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 1051-1057 %V 53 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a0/ %G ru %F ZVMMF_2013_53_7_a0
V. A. Abilov; F. V. Abilova; M. K. Kerimov. Some issues concerning approximations of functions by Fourier–Bessel sums. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 7, pp. 1051-1057. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_7_a0/