Application of perturbation theory to the solvability analysis of differential algebraic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 6, pp. 958-969 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Linear systems of ordinary differential equations with an identically singular or rectangular matrix multiplying the derivative of the desired vector function are considered. The structure of general solutions is discussed. A special case of perturbed systems is studied by applying the Vishik–Lyusternik method.
@article{ZVMMF_2013_53_6_a9,
     author = {A. A. Boichuk and A. A. Pokutnyi and V. F. Chistyakov},
     title = {Application of perturbation theory to the solvability analysis of differential algebraic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {958--969},
     year = {2013},
     volume = {53},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a9/}
}
TY  - JOUR
AU  - A. A. Boichuk
AU  - A. A. Pokutnyi
AU  - V. F. Chistyakov
TI  - Application of perturbation theory to the solvability analysis of differential algebraic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 958
EP  - 969
VL  - 53
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a9/
LA  - ru
ID  - ZVMMF_2013_53_6_a9
ER  - 
%0 Journal Article
%A A. A. Boichuk
%A A. A. Pokutnyi
%A V. F. Chistyakov
%T Application of perturbation theory to the solvability analysis of differential algebraic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 958-969
%V 53
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a9/
%G ru
%F ZVMMF_2013_53_6_a9
A. A. Boichuk; A. A. Pokutnyi; V. F. Chistyakov. Application of perturbation theory to the solvability analysis of differential algebraic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 6, pp. 958-969. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a9/

[1] Brenan K. E., Campbell S. L., Petzold L. R., Numerical solution of initial-value problems in differential-algebraic equations, Classics in applied mathematics, 14, SIAM, Philadelphia, 1996 | MR | Zbl

[2] Boyarintsev Yu. E., Chistyakov V. F., Algebro-differentsialnye sistemy. Metody chislennogo resheniya i issledovaniya, Nauka, Novosibirsk, 1998 | MR | Zbl

[3] Luzin N. N., “K izucheniyu matrichnoi sistemy teorii differentsialnykh uravnenii”, Avtomatika i telemekhanika, 1940, no. 5, 4–66 | MR | Zbl

[4] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966 | MR

[5] Boyarintsev Yu. E., Regulyarnye i singulyarnye sistemy lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, Novosibirsk, 1980 | MR | Zbl

[6] Chistyakov V. F., Algebro-differentsialnye operatory s konechnomernym yadrom, Nauka, Novosibirsk, 1996 | MR

[7] Campbell S. L., Petzold L. R., “Canonical forms and solvable singular systems of differential equations”, SIAM J. Alg. and Discrete Meth., 1983, no. 4, 517–521 | DOI | MR | Zbl

[8] Kunkel P., Mehrmann V., Differential-algebraic equations: analysis and numerical solution, European Mathematical Society, 2006 | MR | Zbl

[9] Boichuk A. A., Samoilenko A. M., Generalized inverse operators and Fredholm boundary value Problems, VSP, Utrecht–Boston, 2004 | MR | Zbl

[10] Vishik V. I., Lyusternik L. A., “Reshenie nekotorykh zadach o vozmuscheniyakh v sluchae matrits i samosopryazhennykh i nesamosopryazhennykh differentsialnykh uravnenii”, Uspekhi matem. nauk, 15:3 (1960), 3–80 | MR | Zbl

[11] Boichuk A. A., Pokutnyi A. A., “Bounded solutions of linear perturbed differential equations in a Banach space”, Tatra Mountains Mathematical Publications, 38 (2007), 29–41 | MR

[12] Boichuk A. A., Shegda L. M., “Bifurkatsiya reshenii vyrozhdennykh neterovykh kraevykh zadach”, Differents. ur-niya, 47:4 (2011), 459–467 | MR | Zbl

[13] Zhuk S. M., “Zamknutost i normalnaya razreshimost operatora, porozhdennogo lineinym differentsialnym uravneniem s peremennymi koeffitsientami”, Nelineinye kolebaniya, 10:4 (2007), 464–479 | MR