Grid construction for discretely defined configurations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 6, pp. 938-945 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An important element of global software codes for computing real-life three-dimensional problems with singularities (such as boundary and internal layers, shocks, detonation waves, combustion fronts, high-speed jets, and phase transition zones) is automatic adaptive grid generation, which can considerably enhance the efficiency of computer resource management. In three-dimensional domains with boundaries of complex geometry, in particular, with discretely defined boundaries, adaptive grids are generated by applying inverted Beltrami and diffusion equations for a spherical monitor tensor.
@article{ZVMMF_2013_53_6_a7,
     author = {A. V. Kofanov and V. D. Liseikin},
     title = {Grid construction for discretely defined configurations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {938--945},
     year = {2013},
     volume = {53},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a7/}
}
TY  - JOUR
AU  - A. V. Kofanov
AU  - V. D. Liseikin
TI  - Grid construction for discretely defined configurations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 938
EP  - 945
VL  - 53
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a7/
LA  - ru
ID  - ZVMMF_2013_53_6_a7
ER  - 
%0 Journal Article
%A A. V. Kofanov
%A V. D. Liseikin
%T Grid construction for discretely defined configurations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 938-945
%V 53
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a7/
%G ru
%F ZVMMF_2013_53_6_a7
A. V. Kofanov; V. D. Liseikin. Grid construction for discretely defined configurations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 6, pp. 938-945. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a7/

[1] George P. L., Borouchaki H., Delaunay triangulation and meshing. Application to finite elements, Hermes, 1998 | MR

[2] Liseikin V. D., Grid generation methods, Springer, Berlin, 2010 | MR | Zbl

[3] Prey P. J., George P. L., Mesh Generation Application to Finite Elements, Wiley, New York, 2008 | MR

[4] Garanzha V. A., Kudryavtseva L. N., “Postroenie trekhmernykh setok Delone po slabostrukturirovannym i protivorechivym dannym”, Zh. vychisl. matem. i matem. fiz., 52:3 (2012), 499–520 | Zbl

[5] Danaev N. T., Liseikin V. D., Yanenko N. N., “O chislennom raschete dvizheniya vyazkogo gaza vokrug tela vrascheniya na podvizhnoi setke”, Chisl. metody mekhan. sploshnoi sredy, 11:1 (1980), 51

[6] Winslow A. M., Adaptive mesh zoning by the equipotential method, UCID-19062, Lawrence Livermore National Laboratories, 1981

[7] J. F. Thompson, B. K. Soni, N. P. Weatherill (eds.), Handbook of grid generation, CRC Press, Boca Raton, FL, 1999 | MR | Zbl

[8] Vaseva I. A., Kofanov A. V., Liseikin V. D. i dr., “Tekhnologiya postroeniya prostranstvennykh adaptivnykh setok”, Zh. vychisl. matem. i matem. fiz., 50:1 (2010), 99–117 | MR | Zbl

[9] Kofanov A. V., Liseikin V. D., Rynkov A. D., “Primenenie sharovogo metricheskogo tenzora dlya adaptatsii setok i resheniya prikladnykh zadach”, Zh. vychisl. matem. i matem. fiz., 52:4 (2012), 653–670 | Zbl

[10] Liseikin V. D., Rynkov A. D., Kofanov A. V., Tekhnologiya adaptivnykh setok dlya chislennogo resheniya prikladnykh zadach, Novosib. gos. un-t, Novosibirsk, 2011

[11] Liseikin V. D., Rychkov A. D., Kofanov A. V., “Applications of a comprehensive grid method to solution of three-dimensional boundary value problems”, J. Comput. Phys., 230 (2011), 7755–7774 | DOI | MR | Zbl

[12] Garanzha V. A., “Barernyi metod postroeniya kvaziizometrichnykh setok”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1685–1705 | MR | Zbl

[13] Liseikin V. D., Layer Resolving Grids and Transformations for Singular Perturbation Problems, VSP, Utrecht, 2001

[14] Yerry M. A., Shephard M. S., “Automatic three-dimensional mesh generation for three-dimensional solids”, Comput. Struct., 20 (1985), 31–39 | DOI