Scheme for interpretation of approximately computed eigenvalues embedded in a continuous spectrum
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 6, pp. 878-897 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is assumed that a trapped mode (i.e., a function decaying at infinity that leaves small discrepancies of order $\varepsilon\ll1$ in the Helmholtz equation and the Neumann boundary condition) at some frequency $\kappa^0$ is found approximately in an acoustic waveguide $\Omega^0$. Under certain constraints, it is shows that there exists a regularly perturbed waveguide $\Omega^\varepsilon$ with the eigenfrequency $\kappa^\varepsilon=\kappa^0+O(\varepsilon)$. The corresponding eigenvalue $\lambda^\varepsilon$ of the operator belongs to the continuous spectrum and, being naturally unstable, requires “fine tuning” of the parameters of the small perturbation of the waveguide wall. The analysis is based on the concepts of the augmented scattering matrix and the enforced stability of eigenvalues in the continuous spectrum.
@article{ZVMMF_2013_53_6_a4,
     author = {S. A. Nazarov},
     title = {Scheme for interpretation of approximately computed eigenvalues embedded in a continuous spectrum},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {878--897},
     year = {2013},
     volume = {53},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a4/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Scheme for interpretation of approximately computed eigenvalues embedded in a continuous spectrum
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 878
EP  - 897
VL  - 53
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a4/
LA  - ru
ID  - ZVMMF_2013_53_6_a4
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Scheme for interpretation of approximately computed eigenvalues embedded in a continuous spectrum
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 878-897
%V 53
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a4/
%G ru
%F ZVMMF_2013_53_6_a4
S. A. Nazarov. Scheme for interpretation of approximately computed eigenvalues embedded in a continuous spectrum. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 6, pp. 878-897. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a4/

[1] Aslanyan A., Parnovski L., Vassiliev D., “Complex resonances in acoustic waveguides”, Quert. J. Mech. Appl. Math., 53:3 (2000), 429–447 | DOI | MR | Zbl

[2] Linton C. M., McIver P., “Embedded trapped modes in water waves and acoustics”, Wave motion, 45 (2007), 16–29 | DOI | MR | Zbl

[3] Nazarov S. A., “Sobstvennye chisla operatora Laplasa s usloviyami Neimana na regulyarno vozmuschennykh stenkakh volnovoda”, Probl. matem. analiza, 53, Novosibirsk, 2011, 104–119

[4] Nazarov S. A., “Asimptotika sobstvennykh chisel na nepreryvnom spektre regulyarno vozmuschennogo kvantovogo volnovoda”, Teor. i matem. fiz., 167:2 (2011), 239–262 | DOI

[5] Nazarov S. A., “Prinuditelnaya ustoichivost sobstvennogo znacheniya na nepreryvnom spektre volnovoda s prepyatstviem”, Zh. vychisl. matem. i matem. fiz., 52:3 (2012), 521–538 | Zbl

[6] Kardone Dzh., Nazarov S. A., Ruotsalainen K., “Asimptotika sobstvennogo chisla na nepreryvnom spektre suzhayuschegosya volnovoda”, Matem. sbornik, 203:2 (2012), 3–32 | DOI | MR

[7] Nazarov S. A., “Prinuditelnaya ustoichivost prostogo sobstvennogo chisla na nepreryvnom spektre volnovoda”, Funktsionalnyi analiz i ego prilozheniya, 47:3 (2013) | Zbl

[8] Kamotskii I. V., Nazarov S. A., “Rasshirennaya matritsa rasseyaniya i eksponentsialno zatukhayuschie resheniya ellipticheskoi zadachi v tsilindricheskoi oblasti”, Zap. nauchn. seminarov peterburg. otdeleniya matem. in-ta RAN, 264, 2000, 66–82 | MR | Zbl

[9] Evans D. V., Levitin M., Vasil'ev D., “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl

[10] Bonnet-Bendhia A.-S., Starling F., “Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem”, Math. Meth. Appl. Sci., 17 (1994), 305–338 | DOI | MR | Zbl

[11] Nazarov S. A., “Iskusstvennye kraevye usloviya dlya poiska poverkhnostnykh voln v zadache difraktsii na periodicheskoi granitse”, Zh. vychisl. matem. i matem. fiz., 46:12 (2006), 2265–2276 | MR

[12] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[13] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[14] Wilcox C. H., Scattering theory for diffraction gratings, Springer, Berlin, 1984 | MR

[15] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Moskovsk. matem. ob-va, 16, 1963, 219–292

[16] Nazarov S. A., “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain”, Sobolev Spaces in Mathematics, v. II, Internat. Math. Series, 9, ed. Maz'ya V., 2008, 261–309 | DOI | MR

[17] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, izd-vo Inostr. lit., M., 1962 | MR

[18] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[19] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | DOI | MR | Zbl

[20] Nazarov S. A., “Kriterii suschestvovaniya zatukhayuschikh reshenii v zadache o rezonatore s tsilindricheskim volnovodom”, Funktsionalnyi analiz i ego prilozheniya, 40:2 (2006), 20–32 | DOI | MR | Zbl

[21] Grikurov V. E., Heikkola E., Niettaanmäki P., Plamenevskii B. A., “On computation of scattering matrices and on surface waves for diffraction gratings”, Numer. Math., 94 (2003), 269–288 | DOI | MR | Zbl

[22] Van Daik M., Metody vozmuschenii v mekhanike zhidkostei, Mir, M., 1967 | Zbl

[23] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[24] Nazarov S. A., “Variatsionnyi i asimptoticheskii metody poiska sobstvennykh chisel pod porogom nepreryvnogo spektra”, Sibirsk. matem. zh., 51:5 (2010), 1086–1101 | MR | Zbl

[25] Mazja W. G., Nazarov S. A., Plamenewski B. A., Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. 1, Akademie-Verlag, Berlin, 1991

[26] Nazarov S. A., Olyushin M. V., “O vozmuscheniyakh sobstvennykh znachenii zadachi Neimana vsledstvie variatsii granitsy oblasti”, Algebra i analiz, 5:2 (1993), 169–188 | MR | Zbl